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Abstract. In this paper, a method that approximates the individual observations
in a grouped frequency distribution is presented. This approximation provides an
alternative method for computing descriptive statistics like the mean, variance and
the mean absolute deviation about the median and also opens up the data to fur-
ther statistical analysis. In particular, the method for calculating the mean absolute
deviation about the median bypasses the absolute operator and provides a new
way of assessing dispersion in grouped frequency distributions. The performance
of the proposed method was assessed via the mean squared error, mean absolute
percentage error and the Kolmogorov-Smirnov test. The descriptive statistics ob-
tained through the proposed method were compared with the Brazauskas-Serfling
method, using real-life data and simulated data. The results showed that the pro-
posed method yields a good fit when evaluated against the ungrouped original ob-
servations and competed favourably with the Brazauskas-Serfling method, as the
values of the performance metrics were equal in most cases. The proposed method
therefore provides a way to assess the goodness-of-fit of a grouped data against
any hypothesized distribution, as well as provide an estimate of the mean absolute
deviation about the median for grouped frequency distributions.

Keywords: Grouped data, de-grouping, goodness-of-fit, mean absolute deviation about
the median.
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1. Introduction

The categorization of data into class intervals in a grouped frequency distribu-
tion may be due to several considerations including compactness and the need to
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115 Sanni et al.

provide a quick descriptive summary of the data. However, such grouping leads
to loss of important information about the individual observations. Aggregation
of large datasets into sets of manageable sizes produces datasets whose entries
are symbolic data (Billard and Diday, 2006).

Descriptive statistics are used to provide quantitative description or summary
of grouped or ungrouped data. A fundamental difference between descriptive
statistics and inferential statistics is that descriptive statistics help to summarize
the sample without inference being drawn on the population from which the
sample was obtained. Thus, generally, descriptive statistics, unlike inferential
statistics, are not developed on the basis of probability theory. However, there is
an intrinsic link between descriptive statistics and inferential statistics because
the data emanated from a probability distribution, and grouping leads to the loss
of vital information that could have been useful for inferential purposes.

The aim of the study is to conceptualize a new method for de-grouping a
frequency distribution and open up grouped data to further statistical analy-
sis otherwise restricted by grouping. Alternative formulas for computing the
mean, median, variance and the mean absolute deviation about the median for
grouped data will be obtained and the performance of the method will be evalu-
ated against an existing de-grouping method using both real-life and simulated
data.

A frequency distribution is the organization of raw data in table form, using
classes and frequencies (Bluman, 2012). When the size of the sample is large,
it is desirable to group the data into non-overlapping classes, called a grouped
frequency distribution. The procedure for finding the descriptive statistics of
grouped frequency distributions assumes that the mean of all the raw data value
in each class is equal to the midpoint of the class (Bluman, 2012). In reality, this
is not the case, since the average of the ungrouped data values in each class will
not be exactly equal to the midpoints. The procedure is thus an approximation
of the true situation, and the midpoint represents an estimate of all the values
in the class. Similarly, the estimate of the median for grouped frequency dis-
tributions 1s obtained via interpolation, hence it is also an approximation. The
choice of the number of intervals, k in the grouped data can be made using any
of the following rules: arbitrary, Sturges’, 2 to the k rule and minimum of /n
and 10log;on , where n is the sample size (Lohaka, 2007; Adegboye, 2009). Lo-
haka (2007) provides a comprehensive list of alternative ways of constructing
frequency distributions. It is noted that sometimes, the class intervals are pre-
determined by the purpose for which they are to serve, for example, the class
interval for the grades in an examination (Adegboye, 2009).

The best predictor of an individual observation in a distribution is the predic-
tor that keeps the sum of the possible absolute prediction error to a minimum.
This is known as the least absolute error criterion (Adegboye, 2009). The mean
cannot be computed if the frequency distribution has an open-ended class, but
the median can be computed for such cases, and the median is also less affected
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by outliers, in comparison to the mean (Adegboye, 2009; Bluman, 2012).

The breakdown point for a parameter (mean, median, variance, etc) is the
proportion or number of arbitrarily small or large extreme values that must be
introduced into a sample to cause the estimator to yield an arbitrarily bad re-
sult (Brazauskas and Serfling, 2003; Arachchige and Prendergast, 2019). The
mean absolute deviation about the median, MAD(md) offers a direct measure
of the dispersion of the random variable X from its median. Generally, if the
mean absolute deviation is the preferred measure of variability, then the median
is the appropriate measure of central tendency and this is the case for asymmet-
ric distributions where the median is a better representative of the centre of the
distribution than the mean (Pham-Gia and Hung, 2001). For the normal distribu-
tion, MAD () = MAD (md) = 04/2/7 = 0.80 (Pham-Gia and Hung, 2001).
For asymmetrical distributions, the MAD(md) provides a meaningful dispersion
measure related to the centre. The mean absolute deviation about the median,
the mean absolute deviation about the mean and the standard deviation for any
distribution can be related via a corollary of Lyapounov’s inequality (Pham-Gia
and Hung, 2001; Choulakian and Abou Samra, 2020):

MAD (md) < MAD (n) <o

(1/2)
Very few applications have been found for {E (X — md)2 as the mean-

ing remains unclear (Pham-Gia and Hung, 2001), and analytic expressions of
MAD(md) cannot be obtained for most skewed distributions. The mean abso-
lute deviation about the median has been used effectively to measure skew-
ness andkurtosis and to partially order distributions, as mentioned in Pham-
Gia and Hung (2001). A measure of the skewness of a distribution is § =
(x — md)/MAD(md) (Pham-Gia and Hung, 2001). The MAD(md) is hardly
amenable to higher mathematical analysis and it is not scale-invariant, as its
magnitude depends on the unit of measurement of the data (Adegboye, 2009,
Gupta, 2011). It 1s actually useful or preferred as a measure of dispersion in
highly skewed distributions and in the presence of outliers, which tend to dis-
tort the standard deviation (Bonnet and Seier, 2003). The MAD(md) tends to
increase with the size of the sample though not proportionately and not rapidly
as the range (Gupta, 2011). It cannot be computed for distributions with open-
ended classes. In spite of its drawbacks, the mean absolute deviation about the
median is being deployed in various areas of applications spanning economics,
business and industry because of its simplicity, accuracy and the fact that the
standard deviation gives greater weightage to the deviations of extreme obser-
vations (Gupta, 2011). It is commonly useful in computing the distribution of
personal wealth in a country and forecasting business cycles (Gupta, 2011).
Heitjan (1989) provided a detailed exposition of the methods of grouped data
inference, problems, techniques and results. The grouped sample variance, un-
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like the mean, 1s biased and the bias is reduced when the interval widths become
smaller (Heitjan, 1989). Grouping should be carried out cautiously, ass large,
unevenly spaced intervals, unequal interval widths and highly multicollinear
data significantly affect the estimates obtained via grouping (Heitjan, 1989).
Relevant methods for finding the univariate histogram and sample mean and
variance for a single interval-valued variable without rules were derived by
Bertrand and Goupil (2000). A compendium of important results and the distri-
butional properties of the mean and median absolute deviation were presented
in Pham-Gia and Hung (2001). Pham-Gia and Hung (2001) further provided
the sampling distributions, distinct notation, behaviour and applications of the
MAD.

Bonnet and Seier (2003) derived approximate confidence intervals for the
mean absolute deviation about the median in one-sample and two-sample de-
signs and showed that the MAD was a better alternative to the variance when
there are departures from the normality assumption. Estimates of the cover-
age probabilities were obtained using Monte Carlo simulation of specified sam-
ple sizes from several probability distributions. The simulation results showed
that the proposed confidence intervals had coverage probabilities close to the
true confidence interval in mild leptokurtic and mild skewed distributions.
Brazauskas and Serfling (2003) presented a uniform de-grouping method for
grouped data which enabled their analysis of the distributional properties of the
grouped data. The uniform de-grouping approach neither distorts the original
data nor changes the total within classes. It allowed for methods of estima-
tion and goodness-of-fit to be carried out because the data has been structured
to be continuous. Various goodness-of-fit tests like the Kolmogorov-Smirnov,
Anderson-Darling and Cramer von Misses tests were explored for the analysis
of the de-grouped data in comparison with some possible probability distribu-
tions. However, the formula of Brazauskas and Serfling (2003) could provide
estimates for intervals with zero frequency, thereby increasing the number of
observations by the number of empty classes in the dataset. Boos and Brownie
(2004) outlined test of hypothesis procedures based on alternative measures of
scale, such as the mean absolute deviation about the median, asserting that such
procedures produce superior Type I and Type II error properties.

Some formulas for basic descriptive statistics on interval-valued data in the
presence of rules were presented by Billard and Diday (2006). Crafford (2007)
explored a maximum likelihood double iterative procedure to estimate the pa-
rameters of grouped data by treating the frequencies as a random vector of a
multinomial distribution whose maximum likelihood estimates are the relative
frequencies of the observed frequency vector. The Chi-squared statistic and the
Wald statistic were used as goodness-of-fit tests to establish the validity of the
inference drawn from the iterative procedure. The computational complexity
of the method will be high when there are more classes and Crafford (2007)
only considered frequency data with only five classes 100 observations. An
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extensive review of the methods of constructing grouped frequency distribu-
tions was provided by Lohaka (2007), who also proposed an iterative method
for constructing grouped frequency distributions and histograms by uniquely
determining the number of classes, the class width, the starting point and the
appropriate range for the distribution. He then compared the estimated parame-
ters of the proposed method with the analysis from the SPSS statistical package
using simulated data. It is noted however that Lohaka (2007) iterative method
produced a higher number of classes than the widely used Sturges’ rule.

Habib (2012) provided an alternative formula for the MAD(md) by introduc-
ing a binary indicator function for the values below the median. The mean ab-
solute deviation about the median is then expressed in terms of the covariance
between the random variable and the indicator function. This new categorization
of the MAD(md) was then used to explore some other properties of the statistic
like correlation and skewness as well as the tail length distribution. However, a
rigorous justification for the existence of the covariance of the indicator function
and the original random variable was not provided in Habib (2012).

Leys et al. (2013) surveyed the use of outliers detection techniques in the
field of psychology, showing a preponderance of using the mean plus or mi-
nus three standard deviations, which has been established to be problematic.
The median absolute deviation was proposed as a robust alternative and was
found to provide a strong outlier exclusion criteria. A Monte Carlo acceptance-
rejection sampling plan within the interval, used to de-group the observations
of a grouped frequency distribution was undertaken by Chen and Miljkovic
(2019). The method requires the class interval means as input into the process
of de-grouping. Chen and Miljkovic (2019) then compared their method with
the method of Brazauskas and Serfling (2003) and showed that their method
outperformed the previous method, although on the basis of the metrics of per-
formance analysis used (the mean squared error and the bias), there were no
significant differences between the two methods, even though their proposed
method was more complex than the Brazauskas-Serfling method. The mean and
the median are most of the commonly used measures of central tendency, while
the variance and mean absolute deviation about the median are measures of
dispersion.

2. Materials and Method

Let x1, x2, ---, x, be independent and identically distributed observations
from a given population. The sample mean, ¥ is given as

n
1
x:—g T;
n <
1=1
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The sample variance is given as

T(ns1), 1f nis odd
1 , 1f nis even (D)
2

( HOREE +1)>

THEOREM 1 Let x1, x99, ---, x, be a random sample of size n with median
md(x). Let b represent the sum of all observations below the median, a, the sum
of all observations above the median and T},, the sum of all the observations.
Define the indicator function

[n:{ 1, of nisodd

1f nis even

Then the mean absolute deviation about the median, M AD (md) is given as

1 1

MAD (md) =—(a —b) = — (T, — 2b — Iymd(x)) (2)
n n
Proof. Let x (1), z(9), - ,2(y,) be the ordered observations of the random sam-
ple. By definition,
2] = —z, if © <0
| 4z, ife >0

For the case where n 1s even,

1 n
MAD (md) = Z [#; —md(z)| = ~ ; (i) =
( n n
1 2
i=1 i=5+1
) 3)

:%<—Zx + md —I—Zx ——md (x)

Z'_n _|_1

:% > f‘f(z')—Zl"(i) =%(a—b)
=241 i=1
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Now,

n

Tn:iazi: Z I(i)+i$(i) =a-+b
i=1 i=1

=241

Hence, a = T}, —b, which upon substitution into equation (3) and rearrangement,
yields

MAD (md) % (T, — 2b)

For the case where n is odd, md (z) = (»1) and

2

4)

ButT, =a+0b+ T(am) = a+ b+ md(z), hence a = T), — b — md (), which
upon substitution into equation (4) yields

MAD (md) % (T), — 25— md(z))

Define an indicator function

In:{ 1, 1f nisodd

0, if niseven
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Then the M AD (md) whether n is even or odd, can be expressed as

MAD (md) — % (T — 26— Tymd(z))

where

a+0b, 1fniseven

n . .
Tnzzxi:{a+b+md(a:), if nisodd
=1

The mean absolute deviation about the median has thus been expressed as the
difference between two numbers and this bypasses the absolute operator. The
observations before the median are summed up and subtracted from the sum of
observations after the median. u

THEOREM 2  Given a grouped frequency distribution with k classes, class fre-
quencies f; , lower limits L;, class widths w; and midpoints m;, i = 1,--- | k.
Let an approximation of the individual observations of the data be given as

w; (. 1 . .
yZ]:Ll+_(]__) ]:17"'7fi7 Z:17"'7k (5)
fi 2

Then the mean, y and the variance, Sz are given respectively by

and

1 21 1<
2 _ Q2 i 2 _ 2, * Q2
5y5m+12nzl< 7 )w Sm+n;f151 (6)

where w; is the width of the i'" class interval, 52, = %Zle fi(m; — m)Q, S?
(64

1277 ) Vi
Proof. Define [L;, U;) as the lower and upper limits, respectively of the 7"
class, with width w; = U; — L; and frequency f;. Let the interval [L;, U;) be
partitioned into f; sub-intervals each of length w;/f;. Approximate the j* ob-

servation in the interval [L;, U;) by v;;, the midpoint of the j th sub-interval. The
(i) observation, yi; is therefore given as

1

yz-jZLﬁT-Z(J—E) J=lofi i=1 .k
1
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Since m; = (L; + U;)/2 , and w; = U; — L;, then L; = m; — w;/2 and upon
substitution of L; in the equation above, y;; can be expressed as

iy

yij:mz'“‘Q( 7

The mean, ¥ is then obtained as

%f}if:y - Z 1(mz 23—(1+f@))f1)

1=1 1=1 j=
:_Zfzmz+ ZwZZ]__z;z; 1+szZ
=17

Note that the sum of the first f; natural numbers 1s

fi

- filfit1)
2 ="

J=1

Hence, upon substitution, it is seen that

y k
%Z img+— ZWZM_%;fi(IJrfi)%:%Zfimizm

Therefore

3IH

SYE
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The variance, S;, is

N A y :
fﬁ:ﬁE:zX%fﬂ)—g§jijcm+§@m—u+ﬁ»#—wﬁ
=1 j=1 i=1 j=1 i
1 L 5 1 z 2
_ﬁ;;<(m@m) +(§(2]_(1+f1>) fz) + (m; —m) X
2 (14 7))
1 o LAV
= 2 film mf+qf§:(7§ D 25—+ i)+
1=1 i—1 ) =1
LN |
ﬁ???}(mw—mﬂw—%1+ﬂnﬁ)

= (first term) + (second term) + (third term)
(7)

Now,

k
: 1 _
first term = " E 1 fi(m; — m)2 =52,
1=

k
1
second term = — Z

|
|H
e
VR
E
~—_
[\]
M=
N
N
[N}
_|_
—
_|_
)
o
I
B
S
—
_l_
=

K N2Taf (f . (102
_ L (%)[MNﬁ+2@ﬂ+U+ﬁu+ﬁf_4M@+D]
1=1

L w2 [A(fi 1) (2fi + 1)+ 6(fi + 1% — 12(f + 1)°
gt
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1 o A(fi +1)(2fi +1) = 6(f; +1)°
An f;[ 6 ]

1 iw D(Afi +2—-3f—3) 1 iw f1+1 1)
=1

fz’ 12n
1=1

1 21
E;( 12f2) Z‘ﬂ

and

third term = = ZZ( m) (25 — (1+ f;)) ﬁ) =0

1=1 j=1
Note that the sum of squares of the first f; natural numbers is given as

fi
fz fz 2fi‘|‘1
Z 1) ( )

6

Substituting these expressions into equation (7) yields

1 & f —1 2 2 1 : 2
=5 2 Jilmi - Z( 12, )w =Sty LS

2, .
where 52, = %Zle fi(m; —m) is the between-class variance and

2
o (Ji—1Y o
5= ( 122 )wl

is the within class variance of the i class. m

The overall variance S;, in Theorem 2 is partitioned into two components: the
between-class variance and the within-class variance. These components can be
minimized by having a smaller interval width, w; in relation to the frequency,
fi. That 1s, w; < f;. An important observation is that the variance cannot be
computed when any of the classes have zero frequency. That is, for S; to be
computed, all the class frequencies must be greater than zero.

Miner (1934) showed that the variance of a grouped frequency distribution
is always higher than the variance of the ungrouped data except for the case
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where all the observations in each class are the same, and thus the variances
will be equal. Therefore the present formula for the variance underestimates the
ungrouped sample variance. The proposed estimator of the grouped frequency
variance, which incorporates both within-group and between-group variance is
thus a better estimator of the variance of the population.

THEOREM 3  Given a grouped frequency distribution with n observations dis-
tributed into k classes, having class frequencies f; and class widths w;, 1 =

1,--- , k. Let the observations in the i'" interval be approximated by
1 w;
R S ]
yl] ? + ( 2) ffL

Define the indicator function

j { 1, if nisodd
"0, if niseven
Let L, be the lower limit of the median class r, f, the frequency of the median
class, and C f, the cumulative frequency of the immediate class before the me-
dian class. Then the median md(y) and the mean absolute deviation about the
median MAD(md) are given respectively as

Wy

md(y) = Ly + (5 = Cfrs) : (8)
and
MAD(md) =
43 - (T = 2T1) fy = 4 (0= 200) Lo = (0 = 2CH) + L) wy | (9)
where

S i S
TS:ZZyij:Zmifi, s=1,2,....r—1,r,..., k
i=1

i=1 j=1

Proof. Let the median class be r, the lower limit of the median class, L,, the cu-

mulative frequency for the (r — 1)th class, C f;, and the frequency of the median
class, f,.

o 1w
yij:Li‘|‘(]_§)TZ
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The observations in the median class r are

1Y w,
Yyrj = Ly + (] — —) 12 (10)

If n is odd, then the median will be the (n + 1)/2"" observation. That is, j =
(n+1)/2 — C'f;. Upon substitution into equation (10), it is seen that

md(y)sz(”gl—Cfb—l)%—Lw(g—Cfb)%

If n is even, then the median is the average of the (n/2)! and ((n/2) + 1)
observations. That is

_Lr+<——0fb—1>f—+L +<2+1—Cfb—1)t;—]
_ Wr
fr

o1, +2(——(Jf,,—1 1) 7})—] — I, +( —Cfb)

Therefore, the median is unchanged whether the number of observations is odd
or even, and is given as

md () =L + (5~ Ch) 7

From Theorem 1, the mean absolute deviation about the median, when n is odd
1s given as

ko fi
1 1
MAD (md) = ~% ¥ |yij —md(y)] = —(a = b) = ~ (T — 2 — md(y))

1=1 j=1

3I>—‘

The sum of observations before the median, b, is given as
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_ T_1+%(n—1—20fb)Lr+ o K”_l—m)) (”;1—Cfb+1>

o)

2
]_ r _1
_ T_1+—(n—20fb—1)Lr+w—<n —Cfb)

2 27\ 2

Tt St 1)L +w7”( 20, —1)?
1 w,

= r—1+_<n_20fb_1)[/r+_{(n_2cfb> +1—2(n—20fb)}
2 8fr

Therefore

2b = <2Tr_1+(n—20fb—1)Lr+;UTT {(n—20f5)2+1—2(n—20fb)D

and

MAD(md) — % (Tk - L, — (— —Cfb) : >

~ o7 (0 = 2o = 40— 20R) L,
- [(n C20f)2 41— 2(n—20f,) +2(n — 2Cfb)} w
= 4;]07“ (4(Tk: - 2Tr—1)f7" —4 (TL - 20fb> err_

[(n — 20 f;)* + 1} wr>

From Theorem 1, when n is even,
1
MAD (md) = —(T}, — 2b)
n

In the case where n is even, the median is the average of the (n/2)!* and the
(n/2+1)"" observations. This implies that the median is greater than (or equal to,
in case there is a tie) the (n/2)!"* and less than (or equal to) the (n/2+1)!" observa-
tion. Hence the (n/2)"" observation must be included in the sum of observations
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before the median. Hence,

r—1 fi 5= Ch 3= Ch
b:ZZy¢j+ Z Yrj = Tr1 + Z (L +g(2 _1)>
i=1 j=1 j=1 j=1 "
— To 4 = (n—2C ;) Lo + 8“’7 [(n—2Cf,) (n = 2C fy +2) — 2 (n — 20 ;)]
Ty 4= (n—2Cf;) Ly + ;”7’“(71 —2C'fy)?,

20 =2T,_1 + (7’L — QCfb) L, + ﬂ(n - 2Cfb)2

1,

Therefore,
MAD (md) =
1 1
ﬁ (Tk o 2b) - 4nfrn <4(Tk - QTT—l)fT —4 (n - QCfb) err — [(n — QCfb)Q} wr)
Thus

( 4nf [4 (Tk‘ - 2T7° 1) fr —4 (TL — QCfb) T‘fr_

((n — 20 fy)* + ) wr] . n odd
MAD (md) = ¢
4nf [4 (Tk‘ o 2TT 1) fr —4 (TL - QCfb) Tfr_
L <(n —2Cfy) ) wr} , neven
where

T = ZyZJ—Zmsz, s=1,2, ....r—1,r ..., k
1 5=1

1=

It is noted that

r—1
Cly=> 1
1=1

The MAD(md) could be expressed in a more compact form with the aid of the
indicator function defined in Theorem 1. That i1s,
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MAD(md) =

1
an f;

(T = 2T,1) fr = 4 (0 = 201) Lofy = (0 = 2Cfy)? + L)w
[ |

The mean, median, variance, and mean absolute deviation about the me-
dian are quite useful descriptive statistics in practice. More importantly, the
MAD(md) as specified in Theorem 3 (equation (9)) provides a novel approach
to computing the mean absolute deviation about the median for grouped data,
which was previously not possible. This is possible because of the de-grouping
of the frequency distribution by equation (5). The MAD(md) is a preferred mea-
sure of dispersion for skewed distributions (Bonnet and Seier, 2003).

The formulation of a de-grouping scheme for grouped frequency distributions
opens up such data to greater statistical analysis. Ordinarily, a grouped fre-
quency distribution is not amenable to tests of hypothesis and other analysis on
the distributional properties of the data. However, with this approach, goodness-
of-fit tests could be carried out to ascertain whether the data emanated from a
specified probability distribution with given parameters. Tests of hypothesis on
the estimates of the parameters could also be conducted.

The two sample Kolmogorov-Smirnov (KS) test is a good tool to test the
goodness-of-fit of the proposed approximation. The Kolmogorov-Smirnov test
is based on the empirical cumulative distribution function, and is more pow-
erful than the Chi-square test as a measure of goodness of fit (Brazauskas and
Serfling, 2003) especially for continuous distributions.

Other important methods of assessing the performance of the approximation
are the quantile-quantile (Q-Q) probability plot, the mean absolute percentage
error (MAPE) and the mean squared error (MSE) (Brazauskas and Serfling,
2003; Khair et. al, 2017).

The one-sample Kolmogorov-Smirnov test can be used to test whether a
grouped frequency distribution follows a specified probability distribution af-
ter de-grouping the data. The test statistic D(n) is given as

D (n) = Sup |F, (x) ~F(x)|

all x

where F),(x) is the sample cumulative distribution function and F'(x) is the dis-
tribution function of the hypothesized probability distribution and the supre-
mum is the least upper bound of the differences, that is, the largest absolute
value of the differences between the sample and the population distribution
functions.

The Kolmogorov-Smirnov statistic has a distribution under the null hypothesis
that is independent of the distribution function F'(z) (Conover, 1971; Durbin,
1973). The null hypothesis of the data emanating from the specified probability
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distribution is rejected if the statistic D(n) falls within the critical region of the
test.

The two-sample Kolmogorov-Smirnov test is based on the test statistic D,
given as

D = Sup |Fy, () — Gp(y)]

all x

where F}, (x) is the sample distribution function of the first sample of size m
and G, (y) is the sample distribution function of the second sample.

Values of the asymptotic rejection limits of the test for pre-specified confi-
dence levels are available in tables and the test could be easily carried out using
various statistical packages, with the accompanying p-value computed. Values
of the test statistic D closer to zero show a greater fit between the two datasets.

It is necessary that the proposed method should be robust to outliers. These
outliers or extreme values could disproportionately shift the estimates of param-
eters like the mean and variance. In practice, a grouped frequency distribution
covers all the observations, including outliers. The proposed approximation will
thus be able to capture outliers and the MAD(md) is not significantly affected
by outliers because it is based on the median which has the highest possible
breakdown point and therefore serves as a robust measure of the variability in
the distribution.

3. Results and Discussion

In order to examine the performance of the proposed method of de-grouping and
the derived formulas, two ungrouped datasets culled from Brazauskas and Ser-
fling (2003) were analyzed. The datasets were the 1977 wind catastrophe loss
data and the 1975 Norwegian fire claims data. Furthermore, drawing from the
distributional and parameter choices of Chen and Miljkovic (2019), simulated
data were drawn from the Normal, log-normal, gamma and Weibull distribu-
tions, respectively using the R statistical package. The choice of distributions
makes it possible to assess the performance of the proposed method for sym-
metric distributions as well as skewed distributions.

Random samples of sizes 300 and 1000 were drawn from the specified dis-
tributional choices. The samples were then grouped into classes and estimates
of the mean, median, standard deviation, and mean absolute deviation about the
median were obtained. The choice of the number of intervals, the interval width
and the starting point for the grouped data were based on Sturges’ rule and the
range of the distribution. In most cases, the interval widths were equal, although
in cases with empty classes, such intervals with zero entries were collapsed to
the next non-empty interval to prevent discontinuities or jumps in the distribu-
tion. The first interval was split to two intervals whenever it had more than 50%
of the observations so as to be able to compute the estimate of the median.
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A comparison of the proposed method was made with the method of
Brazauskas and Serfling (2003). The two methods were evaluated on the basis of
the Kolmogorov-Smirnov test, the mean absolute percentage error (MAPE) and
the mean squared errors (MSE) of the two approximations. The de-grouping ap-
proach of Brazauskas and Serfling (2003), called the Brazauskas-Serfling (BS)
method approximates j** observation in the i’ class by the formula

J J J
(1= L. U: = L .
Yij ( fz'—l‘l) 7,‘|_fi_|_1 1 i+ <fi+1) Wy

where f; is the frequency of the class and (L;, U;) are the lower and upper limits,
respectively of the class and w; is the class width. While the proposed method
uniformly allocates the f; observation to the midpoint of each sub-interval, the
BS method allocates the f; observations into (f; + 1) sub-intervals. The choice
of the denominator, (f; + 1) by Brazauskas and Serfling (2003) is not clear. The
estimate of the sample mean, variance, median and mean absolute deviation
about the median can be obtained via the methodology provided by Theorems
I and 2. The results of the analysis of the two datasets from Brazauskas and
Serfling (2003) are presented in Table 1, while the results from the simulations
are presented in the Appendix.

Table 1: Results from the analysis of 1977 wind data and 1975 Norwegian fire
losses data using the Brazauskas-Serfling (BS) method and the proposed de-
grouping method

Data Method T Md SD MAD(md)] MSE MAPE | KS Test
Ungrouped 9.22 5.00 10.11 [ 6.57 - - -

Wind | BS 8.97 4.33 9.33 5.91 1.27 12.78 0.3
Proposed | 8.97 4.25 9.33 5.92 1.28 12.60 0.3
Ungrouped 2018 | 911 4866 | 1368 - - -

Fire BS 2215 | 898 4477 | 1545 2043948 | 5.56 0.099
Proposed | 2215 | 895 4494 | 1545 2067640 | 5.51 0.099

Source: Brazauskas and Serfling (2003).

From Table 1, it is observed that the estimates of the mean for both the
Brazauskas-Serfling and the proposed method were close to the estimate of the
ungrouped data. It is noted that both the wind and fire data are both positively-
skewed with the mean greater than the median in both datasets. There were
also possible outliers in both datasets, with greater number of outliers in the fire
data, as revealed by Brazauskas and Serfling (2003). Both the BS and proposed
method yielded estimates that were not far apart. The Kolmogorov-Smirnov
test also showed that there was no significant difference between both the un-
grouped data and the approximations (BS and proposed). The variance (and
standard deviation) using the proposed method produced marginally higher es-
timates compared to the BS method. Finally, it is seen from Table 1 that the
MAPE and MSE were quite small for the wind data and much larger for the
fire data. The large MSE value could indicate the present of outliers in the data.
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It 1s difficult to have all the class widths equal in the presence of outliers, as
this would yield many empty classes. It is also noted that grouping outliers with
non-outliers significantly alters the shape of the distribution and may lead to
type-1 error, in rejecting the null hypothesis when it ought not to be rejected.
The proposed approximation has made it possible to estimate the MAD(md)
for grouped data, in a manner that takes into consideration the individual ob-
servations. The estimate of the MAD(md) has also been extended to the BS
approximation by Brazauskas and Serfling (2003).

Estimates of the MAD(md) were smaller than the corresponding estimates
of the standard deviation in all cases, thus validating the Lyapounov corollary
that the MAD(md) is always less than or equal to the standard deviation for
all distributions (Pham-Gia and Hung, 2001). The MAPE and MSE values for
the simulations, presented in the Appendix, were generally quite small, indi-
cating a good fit by both the BS and proposed de-grouping methods for the
Normal, gamma and Weibull distributions, while the corresponding values for
the log-normal distribution were very high, indicating the presence of outliers.
The approximations improved substantially as the sample size increased in all
the cases. The Kolmogorov-Smirnov test statistics obtained in comparing the
two de-grouping methods with the ungrouped data revealed a close fit with the
ungrouped data, as none of the results of the simulated data was significant. The
values of the KS test statistic which are closer to zero reflect a better fit than val-
ues that are not close to zero. The normal and Weibull distributions were well
fitted by both methods of de-grouping, while the gamma and log-normal distri-
butions showed higher values of the KS test statistic.

The method of de-grouping a grouped data opens up the possibility of carry-
ing out various tests of hypotheses on grouped data, which otherwise, would not
have been possible without de-grouping. This new computational approach in
obtaining MAD(md) for grouped frequency distributions opens up the field to
capture variability in skewed distributions and in cases where there are extreme
values (outliers), as the MAD(md) is sufficiently impervious to outliers. A close
scrutiny of the goodness-of-fit metrics used showed that the proposed method
competed evenly with the Brazauskas-Serfling method. This is clearly visible
from the results in Table 1 and in the Appendix, as the values of the MSE,
MAPE and the KS statistic were the same in most cases. There was a seemingly
even distribution of the number of times the proposed method outperformed the
BS method and vice versa, hence there was no significant difference between
both methods. With this approach, much information about the raw data is pre-
served, as in practice, the data may have been collected in grouped form.

4. Conclusion

The modified approach to computing descriptive statistics for grouped fre-
quency distributions as presented in this paper enables a de-grouping of the
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grouped data and therefore provides an alternative way of obtaining better ap-
proximations of the population parameter without much loss of information as a
result of grouping. The proposed method compared favourably with the method
specified by Brazauskas and Serfling (2003), as the values of the MSE, MAPE
and KS statistic only exhibited marginal differences. It also makes the grouped
frequency distribution to be amenable to tests of hypotheses on the distributional
properties of the grouped data. The proposed mean absolute deviation about the
median, MAD(md) presents an intuitive way of computing the estimate without
making use of the absolute operator, and is quite useful in measuring dispersion
especially in grouped data that is skewed, which is very common in practice. In
order to enhance the utility of estimates of grouped frequency distributions, it
1s suggested that the data be de-grouped so that more definitive tests of hypoth-
esis and inference could be made on the data beyond conclusions drawn via a
graphical view of the data through its histogram.
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Appendix
Simulation results
Distribution | Sample | Method T Md SD MAD(md) | MSE MAPE | KS
N(p, o) size Test
Ungrouped | 8.99 8.98 [ 0.98 0.77 - - -
300 BS 8.99 8.96 [ 1.00 0.80 <0.002 1 0.345 1 0.027
N(@9,1) Proposed 8.99 8.96 [ 1.00 0.77 <0.002 1 0.334 1 0.027
Ungrouped | 9.0 9.0 0.98 0.79 - - -
1000 BS 9.0 9.0 0.99 0.80 <0.001 [ 0.17 0.013
Proposed 9.0 9.0 0.99 0.80 <0.001 | 0.17 0.012
Ungrouped | 12080 [ 8711 | 12091 [ 7992 - - -
300 BS 12136 [ 8710 | 11963 | 8028 361114 | 6.68 0.043
LN(9,1) Proposed 12136 [ 8678 | 11972 [ 8029 343976 | 6.95 0.043
Ungrouped | 12707 [ 8735 | 13378 [ 8424 - - -
1000 BS 12775 [ 8739 | 13441 | 8500 121326 | 6.29 0.035
Proposed 12775 [ 8729 | 13446 | 8500 113259 | 6.37 0.035
Ungrouped | 0.391 | 0.204 | 0.48 0.313 - - -
300 BS 0412 [ 0.212 ] 0.47 0.310 0.00T 17.08 ] 0.103
Gam(0.8,2) Proposed 0.412 [ 0211 | 0.47 0.310 0.002 16.64 | 0.103
Ungrouped | 0.40 0.22 10.46 0.31 - - -
1000 BS 0.40 0.23 1045 0.29 <0.001 | 3.57 0.018
Proposed 0.40 0.23 1045 0.29 <0.001 | 3.62 0.018
Ungrouped | 8.72 5.68 | 8.78 6.08 - - -
300 BS 8.91 5.94 18382 6.15 0.112 5.50 0.033
Wei(1,8) Proposed 8.91 591 18382 6.19 0.120 5.45 0.037
Ungrouped | 8.21 5.45 8.26 5.83 - - -
1000 BS 8.41 542 828 5.81 0.088 7.89 0.042
Proposed 841 541 [8.28 5,82 0.093 7.7 0.042
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