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Abstract. In this paper we have applied zero-truncated univariate and bivariate distri-
butions to the NHIS data with two outcomes variables that are strongly over dispersed.
Because of strong correlation between the outcome variables, we have fitted bivariate
Poisson model that encompass covariance between the two variables. In the univariate
case, we found that the Type II zero truncated generalized Poisson will be most suitable
to each of the outcome variables. Other models also equally perform well, but the type II
zero-truncated generalized Poisson (ZTGP2) is most preferable because of the ease of its
implementation. For the bivariate models, we recognize that the zero-truncated Marshall
& Olkin (1985) bivariate NB model does not perform well. Our preferred model would
be the version of zero-truncated bivariate Poisson model proposed in Holgate(1964) and
recently represented in AlMuhayfith et al. (2016). Our results indicate that this model is
most suitable. Further it captures the covariance between the two outcome variables.
All the models are implemented in SAS PROC NLMIXED. For each distribution con-
sidered, MLE estimation based on the log-likelihood functions are obtained using the
Adaptive Gaussian Quadrature (usually with 32 q-points) and then optimized by using
the Newton-Raphson algorithm. Starting values are obtained from those obtained from
employing the Poisson or Negative binomial models.

Keywords: Bivariate Poisson, Overdispersion, Quasi negative binomial, Zero-truncated
Bivariate Poisson, SAS PROC NLMIXED
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1. Introduction

Adesina et al. (2021) re-analyzed the The National Health Insurance
Scheme (NHIS) data that is fully described in Mendeley Data web site,
https:/data.mendeley/z7wznk53cf/8. The data, obtained from health facilities in
Ota, Ogun State, Nigeria has 1647 patients. The response variables of interest
are Y1-th number of encounter visits to doctors and Y2-the number of diagno-
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Zero-Truncated Models... 2
sis a patient had for the period of encounter. The predictors in the data set are:
the covariates: Eclass-class of admission (in patient=1, outpatient=0), follow-up
(follow-up=1, no follow-up=0), Sex(male=1, female=0), number of diagnosis
(Y2) which represents the number of diagnosis a patient had for the period of
encounter and age of patient.
The predictors here are:

• eclass- nature of admission (1=for in patients, 0=for outpatients)
• sex- gender of patients (male=1, female=0)
• sge- age of patients
• Followup- (followup=1, no-follow-up=0)-designated here as fup.

The variable Y1 has ȳ1 = 3.3892; s21 = 11.5987, giving a dispersion index of
3.4223 > 1 thus indicating strong over-dispersion.
Further, Y1 has the range [1, 27], thus, it is truncated at Y = 0. The variable Y2-
the number of diagnosis a patient had during the period also has, ȳ2 = 2.60777;
s22 = 3.7586, giving a dispersion index of 1.4413 > 1. This therefore also in-
dicates over-dispersion though not as strong as that of variable Y1. Again the
range of Y2 is [1,15], also indicating truncation at Y = 0.
The question arises-why bother about truncation for this data set. For outcome
variable Y1, the expected number of zeros under the Poisson model is 1647 ×
e−3.3892 = 56 observations out of the 1647 observations in the data which is
substantial. On the other hand, for the outcome variable Y2, the expected number
of zeros is 1647× e−2.60777 = 122 observations which is quite substantial. Thus,
we need to account for the non-zero occurrences in the two outcome variables
by implementing zero-truncated models to the data. The two outcome variables
have a sample correlation coefficient ry1y2 = 0.8849 which is very high. Thus
this can not be ignored in our model implementation.
The zero-truncation, when ignored, might lead to the over-dispersion that we
observed. Various models have been suggested for modeling zero-truncated
data. In the first section of this paper,

• we shall consider zero-truncated distributions (namely, Poisson, Negative
binomial, Type 2 Generalized Poisson, Quasi-negative binomial, IT) to
the frequency count data, Y1 and Y2 separately, ignoring the covariates-to
see what distribution better explains the variations in the response vari-
ables.

• Apply the zero-truncated models to the full data with the covariates
• The expected means and variances under these models are computation-

ally obtained as described in Lawal (2017,2018 & 2021).
• Truncated bivariate Poisson model which assumes independence between

the outcome variables (Chowdhury & Islam, 2016) and a truncated ver-
sion of the Famoye (2010) bivariate Poisson model that assumes pres-
ence of covariance among the two variables will be employed and a cor-
responding bivariate negative binomial model based on the Marshall &
Olkin (1985) parameterization.
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3 Lawal
2. Materials and Method

We present below the model formulations of the zero-truncated (ZT) models
employed in this paper. For a random variable Y with a discrete distribution,
where the value of Y = 0 can not be observed, then the zero-truncated random
variable Yt has the probability mass function

Pr(Yt = y) =
Pr(Y = y)

Pr(Y > 0)
, y = 1, 2, 3, . . . . (1)

For the zero-truncated Poisson, with parameter µ, Pr(Y > 0) = 1 − Pr(Y =
0) = 1 − exp(−µ). Hence, the pmf of zero-truncated Poisson random variable
Yt becomes

Pr(Yt = y) =
exp(−µ)µy

y![1− exp(−µ)]
, y = 1, 2, 3, . . . , (2)

Note that the mean of zero-truncated Poisson model is not equal to µ.
Suppose the parameter µ in (2) is replaced by µi = exp(i), the log-likelihood
for the zero-truncated Poisson model in a sample of size n is

log(L) =

n∑
i=1

(−µi + yi log µi − log yi!− log[1− exp(−µi)]) .

The probability mass function for the zero-truncated negative binomial model
is given by

Pr(Yi = yi | yi > 0) =
f(yi;µi, α)

1− (1 + αµi)−α−1 , y = 1, 2, 3, . . . , (3)

In this section, we will examine the corresponding zero truncated regression
models for each of the count models discussed in the preceding section. The
zero-truncated regression models arise in those situations where there is no zero
by nature of the data. An example for instance, is the length of stay at an hos-
pital. Once you are admitted, it is deemed that you have spent at least one day
in the hospital (if number of days is the metric or outcome variable). Thus the
zeros can not be observed in this for all patients admitted into the hospital. For a
discrete distribution, and for a random variable Y, where the value of Y = 0 can
not be observed, then, the zero truncated random variable YT has the probability
density function:

Pr(YT = y) =
Pr(Y = y)

Pr(Y > 0)
, y = 1, 2, · · · , (4)

Zhao et al. (2010) has employed the zero-truncated generalized Poisson using
score tests, while, Lawal (2011) has implemented the ZTP, ZTNB, and ZTGP to
the medpar data. Applications of zero-truncated models abound in the literature.
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2.1 Zero-Truncated Poisson Models-ZTP
For the zero-truncated Poisson model therefore if we apply the expression in
(4), the truncated Poisson with parameter µ, becomes:

Pr(Y = 0) = exp(−µ)

Pr(Y > 0) = 1− Pr(Y = 0)= 1− exp(−µ)

Thus the conditional probability of observing Y events given that y > 0, that is,
the pdf of a zero-truncated Poisson random variable YT is given by:

Pr(YT = y | y > 0) =
Pr(Y = y)

Pr(Y > 0)
=

exp(−µ) µy

y! [1− exp(−µ)]
, y = 1, 2, 3, · · · , (5)

Here,

E(YT | y > 0) =
µ

1− exp(−µ)

Var(YT | y > 0) =
µ

1− exp(−µ)

[
1− µ exp(−µ)

1− exp(−µ)

] (6)

For the zero-truncated Poisson distribution described in (6), the log-likelihood
for a single observation i is:

LL = −µ+ y log µ− log y!− log[1− exp(−µ)] (7)

2.2 The Zero-truncated Negative Binomial Model-ZTNB:
The negative binomial distribution has the pdf,

Pr(µi, k, yi) =
Γ(yi +

1

k
)

Γ(yi + 1)Γ(
1

k
)

(
1

1 + kµi

)1/k(
kµi

1 + kµi

)yi

, yi = 0, 1 · · · (8)

Here, the dispersion parameter k > 0. Thus, for the ZT, we have from (8),

Pr(YT = 0) =

(
1

1 + kµi

)1/k

Pr(YT > 0) = 1−
(

1

1 + kµi

)1/k

= 1− (1 + kµi)
−1/k

and hence, the zero-truncated negative binomial pdf becomes:
http://www.bjs-uniben.org/



5 Lawal

Pr(YT | yi > 0) =

Γ(yi +
1

k
)

Γ(yi + 1)Γ(
1

k
)

(
1

1 + kµi

)1/k(
kµi

1 + kµi

)yi

1− (1 + kµi)
−1/k

(9)

The contribution of the ith observation to the log-likelihood function for the
truncated negative binomial using (9) is:

LL = log[Γ(yi +
1

k
)] +

1

k
log

(
1

1 + kµi

)
+ yi log

(
kµ1

1 + kµi

)
− log[Γ(yi + 1)]− log[Γ(

1

k
)]− log[1− (1 + kµi)

−1/k]

(10)

Its mean and variance are given by:

E(YT ) =
µi

1− (kµi + 1)−1/k
(11a)

Var(YT ) = (1 + kµi + µi)E(YT )− [E(YT )]
2 (11b)

2.3 Zero-truncated Generalized Poisson Distribution-ZTGP:
The type I generalized Poisson regression (GP1) model has the following pdf:

Pr(yi, µi, α) =

(
µi

1 + αµi

)yi (1 + αyi)
yi−1

yi!
exp

{
−µi(1 + αyi)

(1 + αµi)

}
, yi = 0, 1, . . .

(12)

with mean

E(Yi) = µi; and Var(Yi) = µi(1 + αµi)
2. (13)

Consul and Famoye (1989) have also considered the GPI model for over-
dispersed data because like the NB model, the GP also has a dispersion pa-
rameter α. The GP reduces to the Poisson when α = 0.
For zero-truncated version, employing the expression for the GP distribution in
(12), we have for when Y = 0,
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Zero-Truncated Models... 6

Pr(Y = 0) = exp

(
− µi
(1 + αµi)

)
Pr(Y > 0) = 1− exp

(
− µi
(1 + αµi)

)
and hence, the zero-truncated generalized Poisson pdf becomes:
Consequently,

Pr(Y | yi > 0) =

(
µi

1 + αµi

)yi (1 + αyi)
yi−1

yi!
exp

(
−µi(1 + αyi)

(1 + αµi)

)
1− exp

[
− µi
(1 + αµi)

] (14)

Its corresponding log-likelihood function for a single observation having the
generalized Poisson (GP) model is also given by:

LL = yi log

(
µi

1 + αµi

)
+ (yi − 1) log(1 + αyi)−

µi(1 + αyi)

1 + αµi
− log(yi!)

− log

{
1− exp

[
−µi

(1 + αµi)

]}
(15)

2.4 Zero-Truncated Quasi-Negative Binomial Distribution-ZTQNBD
The quasi-negative binomial distribution recently employed in Li et al. (2011)
has the pmf given by:

P (Y = y) =

Γ(y + α)

y!Γ(α)

(
1

1 + cy

)(
1 + cy

1 + b+ cy

)y ( b

1 + b+ cy

)α

, y = 0, 1, . . .

0 for y > m if c < 0
(16)

Lawal (2017) has employed an alternative formulation of the QNBD model.
From (16) therefore, the corresponding zero-truncated model therefore has the
form:

Pr(Yt = y) =

Γ(y + α)

(
1

1 + cy

)(
1 + cy

1 + b+ cy

)y(
b

1 + b+ cy

)α

y!Γ(α)

[
1−

(
b

1 + b

)α] (17)
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7 Lawal
and the corresponding log-likelihood for a single observation becomes:

LL4 = log Γ(y + α)− log(y!)− log[Γ(α)] + log

(
1

1 + cy

)
+ y log

(
1 + cy

1 + b+ cy

)
+ α log

(
b

1 + b+ cy

)
− log

[
1−

(
b

1 + b

)α] (18)

2.5 The Inverse Trinomial Distribution-IT
The IT distribution, (Shimizu and Yanagimoto, 1991), which is derived from
the Lagrangian expression has the pmf of the form

P (Y = y) =
λpλqy

y + λ

|y/2|∑
t=0

(y + λ)!

t!(t+ λ)!(y − 2t)!
×
(
pr

q2

)t

, (19)

y = 0, 1, . . .; λ > 0, p ≥ r and p+ q+ r = 1. It is so named because its cumulant
generating function is the inverse of that for the trinomial distribution, Yanagi-
moto (1989). The IT model was employed for overdispersed medical count data
in Phang and Loh (2014). A zero-truncated application of the model was also
proposed in Phang and Ong (2006), while Phang et al. (2013) observed that the
IT distribution presents “a stochastic formulation as a classical one dimensional
random walk distribution and is another example of a distribution in the Takac
family (Letac and Mora, 1990) with a cubic variance function of the mean”.
The IT is modeled as a three-parameter distribution (λ, p, r). Its corresponding
zero-truncated pmf is given by:

P (YT = y) =
λpλqy

(y + λ)(1− pλ)

|y/2|∑
t=0

(y + λ)!

t!(t+ λ)!(y − 2t)!
.

(
pr

q2

)t

, y = 1, 2, . . .

(20)

since P (Y = 0) = pλ. Hence, its log-likelihood is:

LL = log(λ) + λ log(p) + y log(q)− log(y + λ) + logQ(y, λ)− log(1− pλ).
(21)

where

Q(y, λ) =

|y/2|∑
t=0

(y + λ)!

t!(t+ λ)!(y − 2t)!
.

(
pr

q2

)t
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2.6 The Negative Binomial-Generalized Exponential Distribution NB-GE
The NB-GE distribution with parameters r, α, β is a mixture of the NB and the
generalized exponential distributions, viz:

Y |π ∼ NB(r, π = exp(−λ)), and λ ∼ GE(α, β)

with the resulting unconditional pmf being given by:

f(y; r, α, β) =

(
r + y − 1

y

) y∑
j=0

(−1)j
(
y

j

)[
Γ(α + 1)Γ(1 + r+j

β )

Γ(α + r+j
β + 1)

]
(22)

for y = 0, 1, . . . , and r, α, β > 0.
The means and variances of the NB-GE distribution in (22) are provided in
Aryuyuen & Bodhisuwan (2013).
The NBGE has been applied to both over-dispersed and under-dispersed count
data successfully (see Aryuyuen & Bodhisuwan, 2013; Lawal, 2018) and the
zero-truncated pmf for the NBGE is therefore given in (23) as:

P (Yt = y|r, α, β) =
(
r + y − 1

y

)
.

(
1

G

) y∑
j=0

(−1)j
(
y

j

)[
Γ(α + 1)Γ(1 + r+j

β
)

Γ(α + r+j
β

+ 1)

]
(23)

where, y = 1, 2, . . . and G in (23) is defined as:

G = 1−

[
Γ(α + 1)Γ(1 + r

β )

Γ(α + r
β + 1)

]
The corresponding log-likelihood is:

LL = log[(yi + r − 1)] + log

 y∑
j=0

(−1)j
(
y

j

)(
Γ(α + 1)Γ(1 + r+j

β )

Γ(α + r+j
β + 1)

)
− log yi!− log[(r − 1)!]− log

[
1−

(
Γ(α + 1)Γ(1 + r

β )

Γ(α + r
β + 1)

)] (24)

2.7 ZTCOM-NB
We also present here the zero-truncated model for the class of extended Com-
Poisson models (Chakraborty et al.). We particularly focus on the COM-
Negative binomial distribution which has the following pmf in (25) with pa-
rameters (ν, p, α):

http://www.bjs-uniben.org/



9 Lawal

f(y; ν, p, α) =
(ν)y p

y

(y!)α 1Hα−1(ν, 1, p)
=

Γ(ν + y)

Γ(ν) 1Hα−1(ν, 1, p)
.
py

(y!)α
; y = 0, 1, 2, . . .

(25)

where

1H(ν, 1, p) =

∞∑
k=0

(ν)k pk

(k!)α
=

∞∑
k=0

Γ(k + ν) pk

Γ(ν)(k!)α

and the distribution is defined in the parameter space

ΘCOM−NB = {ν > 0, p > 0, α > 1} ∪ {ν > 0, 0 < p < 1, α = 1}

Hence, its zero-truncated pmf has:

fZT (y; ν, p, α) =
Γ(ν + y)

Γ(ν) (H − 1)
.
py

(y!)α
; y = 1, 2, . . . (26)

Its corresponding log-likelihood is therefore given by:

LL = log[Γ(ν + yi)] + yi log(p)− log[Γ(ν)]− log(H − 1)− α log(yi!) (27)

where H is as defined above.

2.8 Estimation
With log likelihoods of a single observation i from ZIP, ZTNB, ZTGP,
ZTQNBD, ZTIT, ZTNBGE and ZTCOM-NB, given in expressions (7), (10),
(15), (18), (21), (24) and (17) respectively.
Maximum-likelihood estimations from these log-likelihoods are carried out
with PROC NLMIXED in SAS, which minimizes the function −LL(y,Θ) over
the parameter space Θ numerically. Our choice optimization algorithm here is
the Newton-Raphson techniques. Convergence is often a major problem here
and the choice of starting values is very crucial. By carefully setting initial val-
ues in grid format, the initial values can be obtained very easily by continually
adjusting the initial parameters.
One common feature of the distributions described above, and indeed for most
distributions employed for count regression models is that they all have infinite
range. Consequently for a real life data that takes values Y = 0, . . . ,m, it is
most common to observe that the expected probabilities under any of the above
models are not necessarily summing to 1.00 within the range 0 ≤ Y ≤ m as
expected for a probability mass function, and consequently, the expected values
will also not sum to n, the sample size. Lawal (2017, 2019) has provided a
remedy for this anomaly, and we are not focusing on this in this paper.

http://www.bjs-uniben.org/
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3. Application:

In Tables 1 and 2 are the results of implementing the one parameter (ZTP),
some two parameter zero truncated distributions (ZTNB, ZTGP) and some
three parameter zero-truncated distributions (ZTNBD, ZTIT, ZTNBGE and ZT-
COMNB) to the frequency counts of Y1 and Y2 respectively of the NHIS Data.
Except for the ZTP, all the other six probability models do not have their es-
timated cumulative probabilities summing to 1.00 within the observed range
[1,27] of the outcome variable Y1 and [1,15] for Y2. This is characteristic of all
discrete distributions, see Lawal (2017, 2018, 2019). While expressions exist for
the means and variances of the ZTP, ZTNB and ZTGP, the other distributions
do not have such and we have therefore obtained the means and variances of all
distributions employed here computationally using the method of moments as
discussed in Lawal (2017,2019). Suffice to say that results obtained from these
computational procedures agree with those of the ZTP, ZTNB and ZTGP.
We observed immediately, why the ZTP does not fit our data. The variance of
the outcome variable Y1 is grossly under estimated, viz, 2.9478 << 11.5987. The
other distributions on the other hand provide estimated variances and means that
are very close to the observed values in the response variable. Of the other six
models, two models stand out clearly better than the others. These are the ZTGP
and the ZTIT. Both provide lower -2LL as well as lower Wald’s test statistic

X2 =

1647∑
i=1

(y1i − µ̂)2

σ̂2
, The difference between the X2 for the two distributions

is the fact that ZTIT estimates the variance much higher than the observed vari-
ance in the data and does lower the Wald’s Test statistic. The ZTGP on the other
hand produces a matched mean with the observed mean and a much closer vari-
ance to the observed variance.

Table 1: ZT models Applied to frequency counts of variable Y1
Parm. ZTP ZTNB ZTGP ZTQNBD ZTIT ZTNBGE ZTComNB

b̂0=1.1814 b̂0=0.4561 b̂0=0.7316 α̂=0.5271 λ̂=1.0019 α̂=3541.41 α̂=0.9336
k̂=2.6021 τ̂=0.5715 b̂=0.3126 p̂=0.3867 β̂= 5.8707 ν̂=0.6669

ĉ=0.0123 r̂=0.0617 r̂=0.4933 p̂=0.6671
-2LL 8577.5 6716.5 6712.8 6715.1 6712.6 6715.6 6714.2
AIC 8579.5 6720.5 6716.8 6721.1 6718.6 6721.6 6720.2
X2 6476.5867 1709.7236 1620.5949 1610.1446 1609.6312 1615.4079 1615.2553
G2 4091.6430 4091.6446 4091.6440 4088.2381 4091.6444 4099.1970 4091.7401
d.f. 1646 1645 1645 1644 1644 1644 1644
µ̂ 3.3892 3.3892 3.3892 3.3902 3.3892 3.3869 3.3892
σ̂2 2.9478 11.1664 11.7806 11.8570 11.8608 11.8184 11.8195

Similarly, from Table 2 however, the most parsimonious models for outcome
variable Y2 are the ZTQNBD and ZTCOMNB. Both produce means and vari-
ances that are much closer to the observed moments of Y2. Both models do not
have close form estimates of means and variances, thus, these are computation-
ally obtained using the method of moments. We observe that for the ZTQNBD,
ĉ = −0.01574, thus, the moments exist only in the range 0 ≤ Y2 ≤ int(−1/ĉ)
which is 63 in this case. The ZTNBGE model overestimates the mean and vari-
ance here.

http://www.bjs-uniben.org/
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Table 2: ZT models Applied to frequency counts of variable Y2
Parm. ZTP ZTNB ZTGP ZTQNBD ZTIT ZTNBGE ZTComNB

b̂0=0.8595 b̂0=0.5654 b̂0=0.6153 α̂=1.0332 λ̂=3.2801 α̂=4404.33 α̂=1.1942
k̂=0.7465 τ̂=0.2685 b̂=0.5850 p̂=0.7023 β̂=11.7770 ν̂=0.5843

ĉ=-0.0157 r̂=0.0553 r̂=1.5626 p̂=0.9220
-2LL 6090.7 5714.3 5716.2 5713.4 5715.7 5715.8 5713.2
AIC 6092.7 5718.3 5720.2 5719.4 5721.7 5721.8 5719.2
X2 3145.2316 1617.7790 1600.0258 1644.5274 1607.4468 1593.7658 1648.8278
G2 1991.7980 - 1991.7981 1988.56 1991.7989
d.f. 1646 1645 1645 1644 1644 1644 1644
µ̂ 2.6078 2.6078 2.6078 2.6077 2.6078 2.6088 2.6078
σ̂2 1.9670 3.8241 3.8666 3.7619 3.8487 3.8818 3.7521

3.1 ZT Models with Explanatory Variables-GLM
In this section, we have the applied the ZT models discussed in the previous
sections to the full data with four explanatory variables: sex, age, fup and ecs.
Here, both ZTP and ZTNB are modeled with µi = exp(a0 + a1 + a2 + a3 +
a4). The zero-truncated generalized Poisson employed here is the GP type II,
proposed in Consul and Famoye (1992) and Consul (1989) for implementing
GLM generalized Poisson model and has the pmf given by:

fZT (yi; θi, δ) =
θi(θi + δyi)

yi−1e−θi−δyi

yi!(1− e−θ1)
(28)

with yi = 1, . . ., θi > 0, 0 ≤ δ < 1. Expressions for the mean and variance of the
un-truncated version are provided in Joe & Zhu (2005). Thus the distribution
can be modeled in the form:

log

(
θi

1− δ

)
= x′β (29)

The log-likelihood for a single observation would therefore be given by:

LL = log(θi) + (yi − 1) log(θi + δyi)− (θi + δyi)− log(yi!)− log(1− e−θi)
(30)

Where,

θi = exp(x′β + offset) and offset = log(1− δ).

This version of the generalized Poisson or its zero-truncated counterpart are the
ones implemented SAS PROC HPFMM, STATA and R package glmmTMB.
For the ZQNBD, its parameter b is modeled for the four explanatory variables
as:

b = exp(a0 + a1 + a2 + a3 + a4) (31)
http://www.bjs-uniben.org/
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Similarly, the λ, β and p parameters in the ZIIT, ZTNBGE and ZTCOMNB are
modeled respectively in the form of b in expression (31). Results in Tables 3 and
4 are those from implementing the GLM (with explanatory variables) versions
of all the zero-truncated models with outcome variables Y1 and Y2 respectively.
From Table 3 it appears that models ZTGP2, ZTQNBD and ZTCOMNB are
suitable candidates for parsimony, with the ZTGP2 having one less parameter
and much easier to model. It does not have the convergence problems the other
two have in terms of not having suitable initial parameter estimates. Thus, the
zero truncated generalized Poisson Type II model will be preferred here. The
model has reduced the dispersion index of 3.9000 under the ZTP to 0.9844
under the ZTGP2. The ZTGP2 performs better than the ZTNB and both are
computational easier than the other distributions.

Table 3: ZT models on Y1 with covariates
* Sig at 5%

Parm. ZTP ZTNB ZTGP2 ZTQNBD ZTIT ZTNBGE ZTComNB
Int 1.0766* 0.3267 0.5377* 1.0451* -0.2076 1.4695 -0.4143
sex -0.0126 -0.0144 0.0204 -0.0112 0.0213 0.0043 -0.0034
age 0.0032* 0.0043* 0.0058 0.0040* 0.0058 -0.0023 0.0008
fup 0.0726 0.1046 0.0470 0.0901 0.0460 -0.0424 0.0171
ecs 0.2146 0.3323 0.2312 0.2919 0.2300 -0.1423 0.0474

k̂=2.5302 δ̂=0.5416 α̂=0.5211 p̂=0.3812 α̂=100.03 α̂=0.9406
ĉ=0.0107 r̂=0.0591 r̂=0.7021 ν̂=0.6471

-2LL 8550.7 6709.3 6707.7 6708.1 6707.5 6710.4 6707.6
AIC 8560.7 6721.3 6719.7 6722.1 6721.5 6724.4 6721.6
X2 6403.81 1699.84 1615.35 1615.90 1603.73 1635.27 1622.38
G2 4068.56 4067.29 4072.11 4064.68 4072.17 4146.59 4070.46
d.f. 1642 1641 1641 1640 1640 1640 1640

The corresponding results in Table 4 also indicate that most of the models apart
from the ZTP are suitable candidates. However, because of the ease of com-
putation and interpretation, the ZTNB and the ZTGP2 would be highly recom-
mended. In particular, the ZTGP2 is better. We note here that for ZTQNBD,
ĉ = −0.01778 which indicates that the moments exist for 1 ≤ Y2 ≤ 56, with 56
being the int(−1/ĉ).

Table 4: ZT models on Y2 with covariates
Sig at 5%

Parm. ZTP ZTNB ZTGP2 ZTQNBD ZTIT ZTNBGE ZTComNB
Int 0.7735 0.4680* 0.4877* 0.4528 1.0700* 2.3177* -0.1114
sex 0.0021 0.0023 0.0132 0.0008 0.0137 -0.0029 0.0010
age 0.0025* 0.0029 0.0040* 0.0030 0.0043* -0.0021 0.0013
fup 0.0575 0.0714 0.0167 0.0906 0.0205 -0.0397 0.0297
ecs 0.0827 0.1139 0.1053 0.1225 0.1110 -0.0767 0.0430

k̂=0.7354* δ̂=0.3303* α̂=1.0119* p̂=0.7080* α̂=400.01 α̂=1.2023*
ĉ= -0.0178 r̂=0.0559* r̂=1.7973* ν̂=0.5720

-2LL 6080.7 5709.2 5711.7 5708.0 5711.1 5712.3 5707.9
AIC 6090.7 5712.2 5723.7 5722.0 5725.1 5726.3 5721.9
X2 3122.69 1611.92 1600.64 1640.09 1608.23 1586.5370 1644.05
G2 2403.09 1984.22 1984.88 1984.00 1984.81 1984.99 1984.25
d.f 1642 1641 1641 1640 1640 1640 1640

In Table 5 are presented the first and last five estimated means and variances un-
der the ZTGP2 model for the outcome variables Y1 and Y2. The average means
and variances over the entire 1647 observations are very close to the observed
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values in the outcome variables. We have also presented the ranges of these
estimated moments.

Table 5: Estimated Means and Variances under th GLM-ZTGP2 Models
Outcome Y1 Outcome Y2

Obs ȳ1 σ̂2
y1

ȳ2 σ̂2
y2

1 3.4253 11.9086 2.6170 3.8747
2 3.4884 12.2404 2.6576 3.9809
3 3.6447 13.0655 2.7532 4.2316
4 3.5146 12.3785 2.6739 4.0236
5 3.4543 12.0611 2.6363 3.9251
...

...
...

...
...

1643 3.2862 11.1797 2.5460 3.6895
1644 3.5633 12.6352 2.7250 4.1574
1645 3.2132 10.7993 2.4974 3.5634
1646 3.2132 10.7993 2.4974 3.5634
1647 3.5361 12.4914 2.7079 4.1127

Average 3.1485 11.7215 2.6078 3.8512
Range [3.1485,4.0558] [10.4632,15.2527] [2.4526,2.9250] [3.4473,4.6841]

4. Bivariate Zero-truncated Models

The data in our study here is an example of count data exhibiting two response
variables Y1 and Y2, with several covariates (sex, age, followup, ecs). It has been
suggested that the Bivariate Poisson (BVP) is the underlying model for these
outcomes. Such variables may be correlated or independent. There are several
examples of data exhibiting bivariate outcomes (e.g. traffic data often give rise
to two outcomes, viz: number of traffic accidents and number of injuries or fa-
talities occurring during a specified period). Other examples have been provided
in (Famoye, 2010a, 2010b).
The BVP was originally proposed by Holgate(1964) and further discussed in
Johnson et al. (1997).. To formulate the BVP, let, the random variables X1, X2
and X3 follow three independently distributed Poisson with parameters λ1, λ2
and λ3 respectively, with λk > 0, k = 1, 2, 3. The random variables Y1 = X1 +
X3, and Y2 = X2 + X3 is (employing the trivariate reduction method) jointly
distributed as bivariate Poisson JBP(λ1, λ2, λ3) The bivariate joint probability
distribution (AlMuhayfith et al., 2016) is given by:

fJBP (Y1 = y1, Y2 = y2) = e−(λ1+λ2+λ3)

min(y1,y2)∑
i=0

λi3
i!

λy1−i
1

(y1 − i)!

λy2−i
2

(y2 − i)!
(32)

We may note here that there have been several definitions of the bivariate Pois-
son (Famoye, 1999) and several approaches have been discussed in Kocher-
lakota and Kocherlakota (1992). However, we are adopting the definition de-
fined in (32). It can be shown that Y1 and Y2 in (4.1) are marginally distributed
as Poisson with means λ1+λ3 and λ2+λ3 respectively. The covariance between
Y1 and Y2 is
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COV(Y1, Y2) = COV(X1 +X3, X2 +X3)= Var(X3) = λ3, (33)

and thus the correlation between Y1 and Y2 is given by:

corr(Y1, Y2) =
λ3√

(λ1 + λ3)(λ2 + λ3)
, with λ3 > 0 (34)

An alternative formulation for the BVP is provided by Famoye (2010), which,
following Lakshminarayana et al. (1999) defines the probability function as a
product of Poisson marginals with a multiplicative factor and has the form:

fF (y1, y2) =
θy11 θy22 e−(θ1+θ2)[1 + λ(e−y1 − e−dθ1)(e−y2 − e−dθ2)]

y1!y2!
, y1, y2 = 0, 1, 2, . . . (35)

where d = 1 − e−1. The covariance between Y1 and Y2 is λθ1θ2d
2e−d(θ1θ2) and

the corresponding correlation coefficient ρ = λ
√

θ1θ2d2e−d(θ1θ2). Which implies
that the correlation can be positive, zero or negative depending on the value of
λ. However, since λ is modeled as e

′
, it is usually unlikely to be negative or

zero.

5. Zero-Truncated BVP

Following Chou & Steenhard (2011), the zero truncated bivariate distribution
takes the form:

ZTbvp =
f(y1, y2)

ϕ
(36)

for ϕ = 1−f(y1 = 0)−f(y2 = 0)+f(y1 = 0, y2 = 0). Thus, the log-likelihoods
of the zero-truncated versions of the BVP models in (32) and (35) become:

logLL = log[f(y1, y2)]− log ϕ

For the model in (32) therefore, we have,

f(y1 = 0) = e−
λy22
y2!

f(y2 = 0) = e−
λy11
y1!

f(y1 = 0, y2 = 0) = e−λ

(37)
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where λ = (λ1 + λ2 + λ3).
Thus, the log-likelihood LL for the model becomes:

LL1 = −
3∑

k=1

λk +

2∑
k=1

[yk log(λk)− log(yk!)] + log(Q)− log(ϕ) (38)

where

Q =

min(y1,y2)∑
j=0

λj3
j!

λy1−j
1

(y1 − j)!

λy2−j
2

(y2 − j)!

5.1 ZTFamoye
For the Famoye BPV formulation in (35) we also have the following:

f(y1 = 0) =
θy22 e−(θ1+θ2)[1 + λ(1− c1)(e

−y2 − c2)]

y2!
,

f(y2 = 0) =
θy11 e−(θ1+θ2)[1 + λ(e−y1 − c1)(1− c2)]

y1!
,

f [(y1, y2) = 0] = e−(θ1+θ2)[1 + λ(1− c1)(1− c2)]

(39)

where c1 = e−dθ1, c2 = e−dθ2, and d = 1 − e−1. The log-likelihood therefore
becomes:

LL2 =
n∑

i=1

{
2∑

t=1

[yt log(θt)− log(yit)] + log[1 + λ(e−y1 − c1)(e
−y2 − c2)]− log(ϕ)

}
(40)

While the ZTbvp models describe by the log-likelihoods in (38) and (40), have a
covariance structure between Y1 and Y2, the ZTbvp proposed by Chowdhury &
Islam (2016) assumes independence between the two outcome variables. Their
proposed model is presented in (41).

5.2 ZTBVP Model-Chowdhury & Islam
Chowdhury & Islam (2016) discussed the zero-truncated marginal bivariate
Poisson distribution of the form:

fztbp(y1, y2) =
e−(λ1+λ2)λy11 λ

y2
2

y1!y2!(1− e−λ1)(1− e−λ2)
, (y1, y2) = 1, 2, . . . (41)
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while its conditional distribution is given by:

gzt(y1, y2) = fzt(y2|y1)fzt(y1)=
(λ2y1)

y1(λ1)
y1

y1!y2!(eλ2y1 − 1)(eλ1 − 1)
(42)

where:

fzt(y1, y2) =
(λ2y1)

y1

y1!(eλ2y1 − 1)

with mean and variance of (42) being:

µY2|Y1
= E[Y2|Y1, Y2 > 0] =

λ2y1e
λ2y1

eλ2y1 − 1
, and

σ2Y 2|Y1
= Var[Y2|Y1, Y2 > 0]=

λ2y1e
λ2y1

eλ2y1 − 1

[
1− λ2y1

eλ2y1 − 1

]
and fzt(y1) in (42) being similarly defined as:

fzt(y1) =
λy11

y1!(eλ1 − 1)

with mean and variance

µY1
= E[Y1|Y1 > 0] =

λ1e
λ1

eλ1 − 1
, and

σ2Y1
= Var[Y1|, Y1 > 0]=

λ1e
λ1

eλ1 − 1

[
1− λ1

eλ1 − 1

]
Chowdhury & Ismail (2016) proposed the model in (42) and have followed it
up in Chowdhury & Ismail (2019) with and R package bpglm. However the
marginal formulation of the ZTBP in (41) and its corresponding conditional
distribution in (42) and as implemented in the package bpglm assumes that Y1
and Y2 are independently distributed and hence has Cov(Y1, Y2) = 0 which may
not necessarily be the case.
We shall implement both the zero-truncated models of fJBP and the Famoye
fBP (y1, y2) as well as the marginal and conditional versions proposed by
Chowdhury & Ismail using SAS PROC NLMIXED. The former two provide
us with the covariances of the two variables while the Chowdhury models as-
sume independence. We shall compare the results from SAS PROC NLMIXED
with those from the application of the package bpglm.
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5.3 Zero-Truncated Bivariate Negative Binomial
We shall fit the zero-truncated Marshall & Olkin (1985) parameterization of the
bivariate negative binomial. The Marshall-Olkin parameterization of the nega-
tive binomial has the probability mass function given by

f(y1, y2|λ1, λ2, α) =
Γ(y1 + y2 + α)

y1!y2!Γ(α)

(
λ1

λ1 + λ2 + 1

)y1 ( λ2

λ1 + λ2 + 1

)y2 ( 1

λ1 + λ2 + 1

)α

(43)

where λ1, λ2 are the two marginal means and α is the common over dispersion
parameter. Again, for the zero truncated version of the model,

g(y1 = 0) =
Γ(y2 + α)

y2!Γ(α)

(
λ2

λ1 + λ2 + 1

)y2 ( 1

λ1 + λ2 + 1

)α

g(y2 = 0) =
Γ(y1 + α)

y1!Γ(α)

(
λ1

λ1 + λ2 + 1

)y1 ( 1

λ1 + λ2 + 1

)α

g(y1 = 0, y2 = 0) =

(
1

λ1 + λ2 + 1

)α

(44)

Thus leading to the ZT model:

fZT (y1, y2|λ1, λ2, α) =
Γ(y1 + y2 + α)

y1!y2!Γ(α)

(
λ1

λ1 + λ2 + 1

)y1 ( λ2

λ1 + λ2 + 1

)y2 ( 1

λ1 + λ2 + 1

)α

−ϕ

(45)
for (y1, y2) = 1, 2, . . . and ϕ = 1− g(y1 = 0)− g(y2 = 0) + g(y1 = 0, y2 = 0).

6. Application to the NHIS Data

We have earlier established the two outcomes are zero truncated. Further, the
two outcome variables have a sample correlation coefficient ry1y2 = 0.8849
which is very high. Thus this can not be ignored in our model implementations.
To implement the fztJBP model, the λs are modeled as:

λ1 = exp(a0 + a1 + a2 + a3 + a4)

λ2 = exp(b0 + b1 + b2 + b3 + b4)

λ3 = exp(c0)

(46)

We observe here that λ3 is modeled as constant. If so desired, we could model it
as a function of one or any number of the covariates. Our preliminary analysis
indicates that the constant covariate is most suitable.
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6.1 Results
In Table 6 are the results of implementing the zero-truncated bivariate Poisson
and negative binomial to the NHIS data. based on these results, we would pre-
fer either the ZTBJP or the ZTFamoye model. Of the two however, we prefer
the ZTBJP because its correlation coefficient is much closer to the observed
correlation coefficient between the outcome variables. The Famoye model un-
derestimates this correlation coefficient and its convergence is a major issue.
The -2LL in the two models can not be compared as they are based on differ-
ent formulations. There is not much difference between the ZTJBP that utilizes
a constant correlation parameter λ3 or one that incorporates the predictors fup
and age in its formulation-thus varying across the 1647 observations in the data.
The Chowdhury & Ismail (2016) model ignores the dependence of the outcome
variables and is therefore not suitable in this case. based on results from ZTBJP,
we observe that:

• Predictors, sex, age, followup and eclass are all significant on outcome
variable Y1-the number of doctor visits.

• Only predictors age and followup are significant on the Y2 outcome
variable-the number of diagnosis encounters

• the estimated average correlation coefficient is ρ̄ = 0.7520 and has a range
of [0.5944, 0.7844] across the 1647 observations in the data set.

Table 6: MLE Estimates parameters for various ZT Bivariate Models
Sig at 5%

ZTBJP Chow Famoye Molkin
Parameter Constant Variable Constant

Int (Y1) 1.0555 1.0555 1.0766 1.0740 0.0948
sex -0.0436* -0.0436* -0.0126* -0.0700* -0.0096
age 0.0029* 0.0029* 0.0032* 0.0042 0.0027*

followup 0.1683* 0.1684* 0.0726 0.0900* 0.0648
eclass 0.3467* 0.3467* 0.2146 0.5700* 0.2038

Int (Y2) 0.5404 0.5403 0.7735 0.9600 -0.1426
sex -0.0136 -0.0136 0.0021 0.1500* 0.0025
age 0.0013* 0.0013* 0.0025* -0.0008 0.0018

followup 0.1511* 0.1512* 0.0575 0.0370 0.0442
eclass 0.0499 0.0500 0.0827 0.1200 0.0702

λ̂3=1.8145* λ̂=5.3122* α̂=2.8369*
-2LL 82,157 82,099 14,631 14,749 12,708
AIC 82,179 82,125 14,651 14,771 12,730
X2 9870.7742 9871.6394 7926.2108 8224.0417 na
¯̂ρ 0.7576 0.7520 0 0.5933 na
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7. Conclusions:

We have demonstrated in this paper that the zero-truncated distributions when
applied to each outcome separately produce similar results, with the type II
generalized Poisson regression model being the most suitable in the univariate
case. However, because the data has two outcomes, bivariate models applied to
the data seem to more appropriate here. The zero-truncated BJP model behaves
well and clearly performs better than the parameterization presented in Famoye
(2010b). All the models are implemented with SAS PROC NLMIXED. The
zero truncated model proposed in Chowdhury and Islam has a corresponding R
package which makes it easier to implement but is based on the assumption that
both outcome variables are independent which is a rare occurrence in bivariate
data. One major difference between the results here and those in Adesina et
al. (2021) is that the response variable Y1 is over-dispersed rather than being
under-dispersed and some of the -2LL or AIC reported are not realizable.
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