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Abstract. In this paper, we employed the generalized linear mixed models for the binomial, the beta-
binomial, the multiplicative binomial and the Com-Poisson Binomial distributions. These are applied
to two examples of over-dispersed binomial data with covariates. The logistic linear model is employed
for comparative purposes only. SAS PROC NLMIXED is employed for implementing these models. For
the logistic-normal model, we also compare our results from PROC NLMIXED with those from PROC
GLIMMIX in SAS, and R packages glimmer, and STATA program melogit. For this case, our results agree
with those obtained from PROC NLMIXED.The conditional log-likelihoods functions are integrated out
using the adaptive Gaussian Quadrature (usually with 32 q-points) and the optimized by using either the
Newton-Raphson or Nelder-Mead Simplex algorithms. Starting values are obtained by specifying a large
range of grid values for each parameter of the models.
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1. Introduction

For data having binary outcomes, the underlying distribution is the binomial. For a random variable
Y having a ’success’ probability π and thus, a ’failure’ probability (1 − π), if the number of trials
is n, then Y ∼ Binom(n, π). For such data having covariates, x1, x2, · · · , xp, the usual model would
be the binomial or logistic model:

log

(
πi

1− πi

)
= β0 + β1x1i + β2x2i + · · · , βpxpi (1)

The model in (1) assumes that the responses from one subject to another are independently
distributed. However, for data arising from teratology or similar studies, this may not necessarily be
the case as there might be intra-correlation, say, for example amongst subjects in the same litter.
In such a situation the estimated model variance in (1) will grossly underestimate the true variance
and this will lead to the model not fitting the data and consequently leading to overdispersion.
As an example, the data in Table 1 which relates to the frequency of males in 6115 families with
12 children in Sax-ony, previously analyzed in Sokal and Rohlf (1969). The data is originally from
Geissler (1889) and had similarly been analyzed in Borges et al. (2014).

Table 1.: Distribution of males in 6115 families with 12 children

Y 0 1 2 3 4 5 6 7 8 9 10 11 12 Total
count 3 24 104 286 670 1033 1343 1112 829 478 181 45 7 6115

The observed mean and variance of this data set are respectively, µy = 6.2306 and σ2y = 3.4898,
giving a corresponding observed πi, the proportion of males in a 12-child family to be 0.5192.
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GLMM applications in some binary count models 2

When a logistic model of constant probability of success in the form, logit(π) = β0 is applied to
the above data, the estimated mean and variance are respectively, ȳ = 6.2304 and s2 = 2.9956
with a dispersion parameter (DP=ȳ/s2 = 6.2304/2.9956 = 2.0798) and a corresponding estimated
proportion, π̂ = 1/(1 + exp(−0.0769)) = 0.5192, where, −0.0769 being the parameter estimate of
β0 in the binomial model. We observe immediately that the data is over-dispersed and that the
estimated variance under the binomial model grossly underestimates the observed variance in the
data viz: of 12π̂(1− π̂) = 2.9958 is less 3.4898.

In this paper, we shall adopt a variance function of the form in (2), viz:

Var(Y ) = niπi(1− πi)[1 + (n− 1)ρ]= φniπi(1− πi) (2)

where |ρ| < 1 is the intra-correlation coefficient between subjects. Clearly, when ρ = 0 then the
variance function becomes that of the binomial. Otherwise, we see that the variance under the
binomial will always be less than the observed. In such situations, we can attempt to employ other
binary based distributions that would account for this extra-variation, such as the multiplicative
binomial,and the Com-Poisson binomial, both of which are considered in this paper. Other models
in this category are the double binomial, Feirer et al. (2013), and the correlated binomial model,
Kupper and Haseman (1978). These distributions having extra dispersion parameters discussed here
are the multiplicative and the Com-Poisson which are briefly discussed in the following sections.

1.1 The Multiplicative Binomial Model (MBM)

Lovinson (1998) proposed an alternative form of the two-parameter exponential family generalization
of the binomial distribution first introduced by Altham (1978) which itself was based on the original
Cox’s (1972) representation as:

f(y) =

(
n

y

)
ψy(1−ψ)n−y ωy(n−y)

n∑
j=0

(
n

j

)
ψj(1−ψ)n−j ωj(n−j)

, y = 0, 1, . . . , n. (3)

where 0 < ψ < 1 and ω > 0. When ω = 1 the distribution reduces to the binomial with π = ψ. If
ω = 1, n→∞, and ψ → 0, then nψ → µ and the MBD reduces to Poisson(µ).

Elamir(2013) presented some elegant characteristics of the multiplicative binomial distribution,
including its four central moments. His treatment includes generation of random data from the
distribution as well as the likelihood profiles and several examples-some of which are similarly
employed in this chapter.

The probability π of success for the Bernoulli trial, that is, P (Y = 1) can be computed from the
following expression in (4) as:

πi = ψi
κn−i(ψ,ω)

κn(ψ,ω)
; i = 1, 2. (4)

and with κ(.) as defined in (5), where:

κn−a(ψ,ω) =

n−a∑
y=0

(
n− a
y

)
ψy(1−ψ)n−a−y ω(y+a)(n−a−y). (5)

and from (5), we have:
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κn(ψ,ω) =

n∑
y=0

(
n

y

)
ψy(1−ψ)n−y ωy(n−y),

κn−1(ψ,ω) =

n−1∑
y=0

(
n− 1

y

)
ψy(1−ψ)n−1−y ω(y+1)(n−1−y),

κn−2(ψ,ω) =

n−2∑
y=0

(
n− 2

y

)
ψy(1−ψ)n−2−y ω(y+2)(n−2−y).

(6)

Thus, from (5), π1 = ψ[κn−1(ψ,ω)/κn(ψ,ω)], ψ therefore can be defined as the probability of
success weighted by the intra-units association measure ω which measures the dependence among
the binary responses of the n units. Thus if ω = 1, then π = ψ and we have independence among
the units. However, if ω 6= 1, then, π 6= ψ and the units are not independent.

The mean and variance of the MBD are given respectively as:

E(Y ) = nπ1, (7a)

Var(Y ) = nπ1 + n(n− 1)π2 − (nπ1)
2, (7b)

The corresponding two-parameter exponential family representation (Feirer et al., 2013) is also
given by:

f(y|ψ, ω) =

(
n

y

)
1

n∑
j=0

(
n

j

)
ψj(1−ψ)j ωj(n−j)

× exp

(
y log

ψ

1−ψ
+ (n− y)y logω

)
. (8)

1.2 The Com-Poisson Binomial (CPB) model

The probability density function for the Com-Poisson Binomial distribution (Borges et al., 2014) is
given by:

f(y|n, p, ν) =

(
n
y

)ν
πy(1− π)n−y

n∑
k=0

(
n

k

)ν
πk(1− π)n−k

, y = 0, 1, . . . , n, (9)

With π ∈ (0, 1) and ν ∈ R. If ν = 1, the model reduces to the binomial distribution and values of
ν > 1 indicate underdispersion, while values of ν < 1 similarly indicate overdispersion with respect
to the binomial distribution.

The Com-Poisson distribution (Conway and Maxwell, 1961) is given in (10),

f(y) =
λy

(y!)ν
1

Z(λ, ν)
, y = 0, 1, 2, · · · , λ > 0, ν ≥ 0. (10)
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where the the normalizing term Z(λ, ν) is defined as:

Z(λ, ν) =

∞∑
j=0

λj

(j!)ν
. (11)

An approximation to the CPB distribution in the limit n → ∞ and with λ = nνp is given in
Shmueli et al. (2005). Following Borges et al. (2014), if we let θ be defined as:

θ =
π

1− π
. (12)

and dividing both the denominator and numerator of the expression in (9) by a factor of (1 −
π)m(m!)ν , we thus have:

f(y|n, θ, ν) =
θy

(y!)ν
1

Z(θ, ν)
, y = 0, 1, 2, · · · , θ > 0, ν ≥ 0, (13)

where the normalizing term is defined as:

Z(θ, ν) =

n∑
j=0

θj

[j!(n− j)!]ν
. (14)

The various properties of the CPB or the Com-Poisson have been presented in various papers
Borges et al. (2014), Shmueli et al. (2005), and Kadane et al. (2006) applied the CPB to the number
of killings in rural Norway. The means and variance of Yi are respectively given as:

E(Y ) =

n∑
j=0

j θj

Z(θ, ν)[j!(n− j)!]ν
, and (15a)

Var(Y ) =

n∑
j=0

j2 θj

Z(θ, ν)[j!(n− j)!]ν
− [E(Y )]2. (15b)

The two-parameter exponential family representation of the distribution is presented in (16)
(Lawal, 2017)

f(y|n, π, ν) =

(
n

y

)ν 1
n∑
k=0

(
n

k

)ν ( π

1− π

)k × exp

(
y log

π

1− π

)
. (16)

If we let µ = θ1/ν , then θ = µν . Hence, the pmf in (13) becomes:

f(y|n, µ, ν) =

(
µy

(y!)

)ν 1

S(µ, ν)
, y = 0, 1, 2, · · · , n; µ > 0, ν ≥ 0, (17)

where, S(µ, ν) =

n∑
j=0

[
µj

j!(n− j)!

]ν
. The formulation in (17) is based on Guikema and Coffel (2008).

This model will be designated here as CPBµ.
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1.3 Mixture binomial models

Mixture binomial models provide an alternative way of handling overdispersion in binary data, which
is to model the success probability of the Binomial distribution using a continuous distribution de-
fined on the standard unit interval. The resultant general class of univariate discrete distributions
is known as the class of Binomial mixture distributions. The Beta-Binomial (BB) distribution is
a prominent member of this class of distributions. The Kumaraswamy-Binomial (KB) distribu-
tion (Kumuraswamy, 1980) is another well utilized member of this class. Others in this class is
The Two-Sided Power-Binomial (TSP) Distribution (Ali, 2019) and the three parameter McDonald
Generalized Beta-Binomial distribution(McGBB), Manjor al. (2015). Some theoretical properties of
McGBB, KB, BB and the TCP distributions are already discussed in the literature and are therefore
not being discussed here. The parameters of all the models will be estimated via maximum likeli-
hood estimation technique. We would apply these models to the example datasets in this chapter.
One of the consequences in applying the binomial model to data with inherent over-dispersion is
that the model would not fit. The McGBB and other mixing models consider here therefore model
the parameter π of the binomial with continuous distributions defined in the interval (0,1). We will
however focus in this study on the logistic-Normal and Beta-binomial models in this category of
mixed models.

Generally, a mixture model is obtained by evaluating the well-known integral as:

f(y) =

∫ 1

0
fY |ππ

yfπ(π|θ)dπ (18)

for y = 0, 1, . . . , n and θ is the parameter space of the mixing distribution. We discuss in what
follows the logistic-normal and beta-binomial mixture models for mitigating against over dispersion
in binary data.

1.4 The Logistic-Normal Distribution (LND)

Lindsey and Altham (1982) employed the normal distribution as the mixing distribution for the
logit of the Bernoulli probability in a way that is similar to that employed in Hinde (1982) for
over-dispersed Poisson data, viz.

∫ ∞
−∞

f(y; p(λ))φ(λ;µ, ψ2)dλ (19)

where f(y; p) is the binomial function with p as the corresponding probability, and with log(p/(1−
p)) = λ, and φ(.) the normal density with µ the mean logit and ψ the standard deviation. The
expression in (19) requires numerical integration and PROC NLMIXED in SAS has several proce-
dures for evaluating this integral. We implement this model only for the toxicological data using the
default adaptive Gaussian Quadrature procedure in SAS PROC NLMIXED. The logistic-normal
model has the form:

log

(
πij

1− πij

)
= Xβ + ui (20)

where,

rij |u ∼ Binomial(nij , πij), with ui ∼ N(0, σ2u)
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1.5 The Beta-Binomial (BB) model

The beta-binomial in Skellam (1946) is, of course, a mixture of the binomial Bin(n, π) and the beta
distribution Beta(α, β), where,

Y |p ∼ Bin(n, p), and p ∼ Beta(α, β).

That is, the response variable Y has the binomial

f(y|p) =

(
n

y

)
py(1− p)(n−y), y = 0, 1, . . . , n (21)

and the probability p has the beta distribution defined as:

f(p) =
pα−1(1− p)β−1

B(α, β)
, α > 0, β > 0. (22)

where B(α, β) is the beta function with parameters α and β such that

B(α, β) =

∫ 1

0
pα−1(1− p)β−1dp =

Γ(α)Γ(β)

Γ(α+ β)
.

Thus, Bin(n, π) ∧ Beta(α, β) ∼ BB, Hence,the compound distribution is given by:

f(y, α, β) =

∫ 1

0

(
n

y

)
py(1− p)n−y p

α−1(1− p)β−1

B(α, β)
dp

=

(
n

y

)
1

B(α, β)

∫ 1

0
pβ+y−1(1− p)β+n−y−1 dp

=

(
n

y

)
B(α+ y, β + n− y)

B(α, β)
, y = 0, 1, . . . , n

(23)

with Var = np(1 − p)[1 + ρ(n − 1)], where ρ2 =
1

α+ β + 1
is the dispersion parameter which

measures the pairwise correlation between the clusters (Bernoulli trials). Clearly, as ρ → 0, the

variance var(Y ) → np(1 − p), thus, reducing to the binomial distribution. Further,π =
α

α+ β
and

0 < π < 1 and is the probability of ’success’ and that αi + βi = constant.
The mean and variance of the beta-binomial are given by:

E(Y ) = nπ and Var(Y ) = nπ(1− π)[1 + ρ2(n− 1)]. (24)

where

π =
α

α+ β
, and ρ2 =

1

α+ β + 1
.

The beta-binomial model in (23) can be parameterized as:

α = θτ−1, and β = (1− θ)τ−1,
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where τ > 0 and 0 < θ < 1. The mean and variance under this formulation are respectively:

E(Y |n, |θ, τ) = nθ, var(Y ) = nθ(1− θ)
[
1 + (n− 1)

τ

1 + τ

]

θ = π̂ijα = θ/τ ; β = (1− θ)/τρ2 =
1

α+ β + 1
=

τ̂

1 + τ̂

and the log-likelihood becomes:

LL = z + log[Γ(r + α)] + log[Γ(n− r + β)]− log[Γ(n+ α+ β)]

− log[Γ(α)]− log[Γ(β] + log[Γ(α+ β)]

where z = log[Γ(n+ 1)]− log[Γ(r + 1)]− log[Γ(n− r + 1)]

2. Materials and methods

To model each of the distributions presented in the preceding sections, our modeling is of the
following form:

πi = 1/(1 + exp(−lr)) (25a)

θi = 1/(1 + exp(−lr)) (25b)

ψi = 1/(1 + exp(−lr)) (25c)

µi = exp(lr) (25d)

where

lr = xβ + u, u ∼ N(0, σ2)

• The logistic-normal is modeled with π defined in (25a)
• The beta-binomial is modeled with θ defined as in (25b)
• The Multiplicative binomial is modeled with ψ defined in (25c).
• The Com-Poisson binomial model is modeled with µ defined in (25d).

For a single observation, the log-likelihoods for the binomial, beta-binomial, the multiplicative
binomial, and the Com-Poisson binomial are displayed in expressions (26a) to (26d), respectively.

LL1 = z + y log(π) + (n− y) log(1− π) (26a)

LL2 = z + log[Γ(y + α)] + log[Γ(n− y + β)]− log[Γ(n+ α+ β)]

− log[Γ(α)]− log[Γ(β] + log[Γ(α+ β)] (26b)

LL3 = z + y log(ψ) + y(n− y) logω − log

 n∑
j=0

(
n

j

)
ψj(1−ψ)n−j ωj(n−j)

 (26c)

LL4 = y log θ − ν log(y!)− ν log(n− y)!− logZ(θ, ν) (26d)

where z = log

(
n

y

)
and Z(θ, ν) is as defined in (14).
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Maximum-likelihood estimations of the above models are carried out with PROC NLMIXED in
SAS, which minimizes the function −LL(y,Θ) over the parameter space Θ numerically. The integral
approximation employed is the Adaptive Gaussian Quadrature (Pinheiro & Bates, 1995) and the
optimization algorithms utilized are either the Nelder-Mead Simplex method(NMSIMP), or the
Newton-Raphson method with line search (NEWRAP). Choice of starting values are a problem but
this is accomplished by using appropriate values over grids of values for our parameters.

2.1 Applications

Generalized linear mixed models are applied to two well analyzed two data sets in this study. The
data sets employed are the teratology data and the cardio-vascular data both of which are fully
discussed in the following sections:

2.2 Example I: Teratology Data

Teratology is the study of abnormalities of physiological development. The data in Table ?? gives the
results of studies on the effects of dietary regiments or chemical agents on fetal developments in rats.
(Moore & Tsiatis, 1991). Female rats on iron-deficient diets were assigned to four groups. Group 1
(placebo), group 2 (injections on days 7 and 10), group 3 (days 7 and 10), and group 4 (Injections
weekly). 58 rats were made pregnant, sacrificed after three weeks, and the total number of dead
fetuses was counted in each litter, as well as the mother’s hemoglobin level denoted in Table ?? as
h. Due to non measured covariates and genetic variability the probability of death may vary from
litter to litter within a particular treatment group.(n, y). Recent analysis of the data was presented
in Agresti (2015) employing the beta-binomial.

Table 2.: Results of Teratology Studies on Female Rats

Groups Size h (n, y) h (n, y) h (n, y) h (n, y) h (n, y)
GP1 31 4.1 10/1 3.2 11/4 4.7 12/9 3.5 4/4 3.2 10/10

5.9 11/9 4.7 9/9 4.7 11/11 3.5 10/10 4.8 10/7
4.3 12/12 4.1 10/9 3.2 8/8 6.3 11/9 4.3 6/4
3.1 9/7 3.6 14/14 4.1 12/7 4.8 11/9 4.7 13/8
4.8 14/5 6.7 10/10 5.2 12/10 4.3 13/8 3.9 10/10
6.3 14/3 4.4 13/13 5.2 4/3 3.9 8/8 7.7 13/5
5.0 12/12

GP2 12 8.6 10/1 11.1 3/1 7.2 13/1 8.8 12/0 9.3 14/4
9.3 9/2 8.5 13/2 9.4 16/1 6.9 11/0 8.9 4/0
11.1 1/0 9.0 12/0

GP3 5 11.2 8/0 11.5 11/1 12.6 14/0 9.5 14/1 9.8 11/0

GP4 10 16.6 3/0 14.5 13/0 15.4 9/2 14.5 17/2 14.6 15/0
16.5 2/0 14.8 14/1 13.6 8/0 14.5 6/0 12.4 17/0

Thus for litter 1, the mother’s hemoglobin level was 4.1 and one dead fetus out of 10 offsprings.
Similarly, for litter 58, the hemoglobin level was 12.4 with zero fetal death in 17 offsprings.

To implement the GLMM models for the distributions considered above, we let πij denote the
probability of death for fetus j in litter i. Then,

• For the binomial GLMM (logistic-binomial), the set up is:

log

(
πij

1− πij

)
= β0 + β1z2i + β2z3i + β3z4i + β4hij + uij = z′β (27)
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where

z2 =

{
1 if GP2
0 otherwise

, z3 =

{
1 if GP3
0 otherwise

, z4 =

{
1 if GP4
0 otherwise

Thus, GP1 is the reference category in this set up. Thus, from (27), πij = 1/[1 + exp(−z′β)]
and, β0, β1, β2, β3, β4 are to be estimated from the models in addition to the other parameters
of the models.

The results of applying the above models to the data in Table 2 are displayed in Table 3.

Table 3.: Parameter and GOF Statistics under the Five Models

Parameter BIN BINa BB MBM CPB
Intercept 2.1795 2.6250 3.3850 5.1124 1.6829

(0.5056) (1.2066) (1.2475) (2.0689) (1.3969)
gp2 -2.4748* -3.7614 -3.0029* -0.1679 -2.2034

(0.5045) (1.2447) (1.2046) (0.1142) (2.0654)
gp3 -3.1527* -4.7565 -3.0523 -0.9458 -2.8776

(0.9433) (1.8938) (1.8317) (1.2370) (2.6102)
gp4 -2.0520 -3.8229 -1.4166 2.0501 -2.1266

(1.0629) (2.5681) (2.4868) (1.4775) (2.6012)
hemo -0.2190* -0.1773 -0.3662 -0.6954* -0.1348

(0.1020) (0.2448) (0.2465) (0.2841) (0.1649)
τ̂ = 0.0112 ω̂∗ = 0.9552 ν̂ = 0.5115

(0.0578) (0.0792) (0.6094)
ρ 0.0111

-2LL 240.40 183.29 184.4 188.9 183.0
σ2 na 2.3089 2.0867 1.8124 0.7256

0.4122 (0.8748) (1.0731) (1.7897) (1.4290)
X2
W 155.8163 7.1119* 16.5452 17.8363 22.5917

d.f 53 52 51 51 51

For the binomial-logistic model, the residual marginal variance is V ar(uij) = σ2 + π2

3 and conse-

quently, the intra-class correlation coefficient is
σ2

σ2 + π2

3

under this model. For our data , this would

be,
2.3089

2.3089 + 3.2925
= 0.4122. Under the binomial model for instance, the Wald’s GOF is 155.8163

on 53 d.f, giving an estimate of the dispersion parameter to be 2.9400 > 1, thus there is clear over-
dispersion in the data as a result of the intra-class correlation among the offsprings within a litter.
The results in Table 3 indicate that the logistic-binomial model BINa does well when compared with
all other distributions. The estimated variance function for the logistic-binomial can take one of two
forms presented in (28a) and (28b) respectively. The former is the Williams (1982) type III variance
function, which approximates the variance and the latter is the estimated variance presented in
Hinde and Dimétrio (2007).

Var(Y ) ≈ niπi(1− πi)[1 + σ2(ni − 1)πi(1− πi)] (28a)

Var(Y ) = n2iσ
2π2i (1− πi)2 (28b)

With E(Y) still being niπi, the Wald test statistic is computed as:

X2
W =

N∑
i=1

(yi − m̂i)
2

Var
, i = 1, 2, . . . , N(= 58).
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Thus, the Wald’s GOF under logistic-binomial model of 7.1119 is based on the Williams (1982)
type III variance function. However, if we use the expression for the variance Hinde & Dimetrio
(2007), then X2

w would be 15.8857 on 52 d.f. which is still a very good fit. The multiplicative, the
beta-binomial and the Com-Poisson behave very well. However, the BB fits much better with an
a variance estimated component of σ̂2 = 2.0867 and ρ̂2 = 0.0111. Of course, the GLM versions of
these distributions also provide several possibilities for modeling the data in Table 2. Table 4 gives
the estimated probabilities under these models for the data in Table 2.

Table 4.: Estimated probabilities for each group under the various Models

Group BIN BINa BB MBM CPB
GP1 0.7614 0.7795 0.7775 0.7915 0.7805
GP2 0.0961 0.0897 0.0822 0.1228 0.0926
GP3 0.0343 0.0258 0.0326 0.0295 0.0264
GP4 0.0444 0.0367 0.0423 0.0408 0.0402

The estimated probabilities under the GLMM models are very similar (safe for GP2 under MBM).
However, the beta-binomial and the logistic-binomial are the easiest to implement in terms of early
convergence over initial grid values for the parameters.

2.3 Example Data II: Cardiotoxic Effects of Chemotheraphy

This example is from (Nelson et al., 2006) and was originally published at
http://www.stat.sc.edu/ kerrie/cardiodata.html. The data is a correlated binary data which
studies the cardiotoxic effects of doxorubicin chemoteraphy on the treatment of acute lymphoblastic
leukemia in childhood. The data set is presented in Table 5.
In this study, 24 patients previously cured of leukemia had a long-term followup visit to determine
how their hearts were functioning. For each subject on a visit, six similar tests of heart function were
performed, with the result of each test being coded as normal/abnormal. Thus, we have N = 24
clusters, each patient serving as a cluster, and ni = 5 or ni = 6 observations per cluster (some
patients have only 5, and not 6 tests performed). In Table 5, ID=Patient number, r is the number
of abnormal heart tests, n is the number of tests, time=time since chemotherapy (in years), and
dose=1 if High and 0 if low dosage.

Let the response variable be Yij from patient i having a jth heart test such that:

Yij =

{
1 if abnormal

0 if normal

Suppose the probability of an abnormal result is πi, then we have:

πi = Pr[Yij = 1|Dosei,Timei]

=
eβ0+β1Dosei+β2Timei

1 + eβ0+β1Dosei+β2Timei

,

(29)

where Dose is 1 if high and 0 if low, and Timei is the time in years since the last chemotherapy.
The GLMM model therefore becomes:

ln

(
πi

1− πi

)
= x′ β + u; that is,

logitij = β0 + β1 Dosei + β2 Timei + ui

(30)
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Table 5.: Cardiotoxicity study data

ID r n dose time
1 4 6 1 13.7
2 0 5 1 15.6
3 3 5 1 4.6
4 4 5 1 13.0
5 0 5 0 6.2
6 1 6 1 15.4
7 2 5 0 6.5
8 0 5 0 4.4
9 1 5 0 9.6
10 3 5 1 11.2
11 3 5 0 8.1
12 3 5 1 13.1
13 1 5 0 10.1
14 4 6 0 8.4
15 1 5 0 4.2
16 1 5 1 13.5
17 1 5 1 17.9
18 1 5 0 8.8
19 2 6 0 5.9
20 3 5 1 13.2
21 4 5 1 14.5
22 4 6 0 8.1
23 0 5 0 8.2
24 4 6 0 8.1

and u ∼ N(0, σ2). Our formulation of the above model is based on the fact that there is no significant
interaction between dose and time (Nelson et al., 2006). Since the binary observations are assumed
correlated, suppose we let ρ be the correlation (or overdispersion parameter) between two heart
measurements on the same subject.

The parameters θ, ψ and θ in the Beta binomial, the multiplicative, and Com-Poisson binomial are
modeled as discussed earlier in this paper. The results of implementing these models are presented
in Table 6.

Table 6.: Paramter Estimates and Wald’s GOF Under the five Models

Parameter BN BNa BB MBM CPB
Int. -0.2202 -0.2970 -0.2965 -0.6673 -6.1728

(0.6023) (0.8355) (0.7116) (1.9173) (10.8569)
Dose 0.9631 1.1045 0.9626 2.1152 17.3792

(0.5729) (0.7809) (0.7194) (3.2562) (15.0007)
Time -0.0638 -0.0702 -0.0591 -0.1295 -1.0349

(0.0739) (0.1016) (0.0886) (0.2579) (1.4851)
na na τ̂ = 0.1274 ω̂ = 1.5211 ν̂ = 17.8409

(0.2816) (1.8420) (1.2207)
σ2 na 0.6146 0.0043 3.8910 340.02

(0.5339) (1.0054) (13.5081) (471.40)
-2LL 81.8958 79.0 78.9 78.7 78.1
X2

w 35.4218 20.0621 23.7920 7.2461 0.8812
d.f. 21 20 19 19 19

When the binomial model was applied to the data, the Wald’s X2
W = 35.4218 on 21 d.f, giving
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an estimated dispersion parameter (DP) of 1.8668 indicating a strong overdispersion of the data.
Clearly, the Com-Poisson binomial fits the data best with estimated variance component being
σ̂2 = 340.02 which may be higher when compared to the other models. However, we must realize
that the Com-Poisson is not structured like the other models because θ is not parametrized in terms
of its mean µ. Further, when the variance structure in (28a) is employed to compute the Wald’s test
statistic for the logistic-binomial, the computed value is X2

w = 8.4396.
Clearly, based on the -2LL statistic, each of the four GLMM models are very close, but the Wald’s

GOF for the multiplicative GLMM fits the data best. We observe here that the Wald GOF may be
very susceptible to cases when r = 0.

3. Conclusions

Clearly, the results will vary with each data set, but based on the results in Examples I and II,
each of these models, with the exception of the binomial, will behave very well in modeling over-
dispersed data. The procedures introduced in this paper further add to the suit of alternatives for
modeling over-dispersed binary data. It should be noted here that both R and STATA do not yet
have packages for implementing all the above models-the exception being the logistic-normal. The
results of applying both STATA 15 and R packages to model the logistic-normal model for the data
in Example I are presented in the appendix. The results agree. Notice that we have employed the
Adaptive Gaussian Quadrature with 100 q-points in R. The default being the Laplacian integration
which is not as accurate as the AGQ.
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Appendix

STATA (version 15)

==================

. melogit y z2 z3 z4 h || litter:, binomial(n) intpoints(32)

Mixed-effects logistic regression Number of obs = 58

Binomial variable: n

Group variable: litter Number of groups = 58

Obs per group:

min = 1

avg = 1.0

max = 1

Integration method: mvaghermite Integration pts. = 32

Wald chi2(4) = 67.05

Log likelihood = -91.644752 Prob > chi2 = 0.0000

------------------------------------------------------------------------------

y | Coef. Std. Err. z P>|z| [95% Conf. Interval]

-------------+----------------------------------------------------------------

z2 | -3.761355 1.24467 -3.02 0.003 -6.200862 -1.321847

z3 | -4.756476 1.893747 -2.51 0.012 -8.468153 -1.044799

z4 | -3.822939 2.568047 -1.49 0.137 -8.856219 1.210341

h | -.1772736 .2447665 -0.72 0.469 -.6570072 .30246

_cons | 2.625032 1.206566 2.18 0.030 .2602057 4.989858

-------------+----------------------------------------------------------------

litter |

var(_cons)| 2.30886 .8747942 1.098726 4.851832

------------------------------------------------------------------------------

R APPLICATION

=============

rats <-read.table("C:/PAPER2019/rats.txt", header=T)

rats

attach(rats)

gg=as.factor(gp)

z2=ifelse(gg==2,1,0)

z3=ifelse(gg==3,1,0)

z4=ifelse(gg==4,1,0)

Z=data.frame(litter, h, n, r, z2,z3,z4)

u=n-r

library(lme4)

library(nlme)

fit1 <- glmer(cbind(r,u)~z2+z3+z4+h+(1|litter), family=binomial, data=Z,nAGQ=100)
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summary(fit1)

> fit1 <- glmer(cbind(r,u)~z2+z3+z4+h+(1|litter), family=binomial, data=Z,nAGQ=100)

> summary(fit1)

Generalized linear mixed model fit by maximum likelihood (Adaptive Gauss-Hermite

Quadrature, nAGQ = 100) [glmerMod]

Family: binomial ( logit )

Formula: cbind(r, u) ~ z2 + z3 + z4 + h + (1 | litter)

Data: Z

AIC BIC logLik deviance df.resid

123.8 136.2 -55.9 111.8 52

Scaled residuals:

Min 1Q Median 3Q Max

-0.99883 -0.36009 -0.04923 0.61632 0.93921

Random effects:

Groups Name Variance Std.Dev.

litter (Intercept) 2.309 1.519

Number of obs: 58, groups: litter, 58

Fixed effects:

Estimate Std. Error z value Pr(>|z|)

(Intercept) 2.6250 1.2066 2.176 0.02958 *

z2 -3.7614 1.2447 -3.022 0.00251 **

z3 -4.7565 1.8937 -2.512 0.01202 *

z4 -3.8230 2.5680 -1.489 0.13656

h -0.1773 0.2448 -0.724 0.46892

---

Signif. codes: 0 **0.001 *0.01 0.05 0.1 1
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