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Abstract. It is a common practice to detect outliers in a financial time series in order to avoid the adverse
effect of additive outliers. This paper investigated the performance of GARCH family models (sGARCH;
gjrGARCH; iGARCH; TGARCH and NGARCH) in the presence of outliers (small, medium and large)
for different time series lengths (250, 500, 750, 1000, 1250 and 1500) using the Root Mean Square Error
(RMSE) and the Mean Absolute Error (MAE). In a simulation iteration of 1000 times in R environment
using rugarch, results revealed that for small size of outliers, irrespective of the length of time series,
iGARCH was superior, for medium size of outliers, it was sGARCH and gjrGARCH that were superior
irrespective of the time series length, and for a large size of outliers, irrespective of the time series length,
gjrGARCH was superior. The study leveled that in the presence of additive outliers, both RMSE and
MAE values would increase as the time series length is increased.

Keywords: additive outliers, models, simulation, time series length, R software.

Published by: Department of Statistics, University of Benin, Nigeria

1. Introduction

It is known that response variables are not only affected by exogenous variables but also by them-
selves from their past behavior (Ali, 2013). On the basis of this theoretical underpinning, autoregres-
sive models have been developed. Box and Jenkins time series modeling is indispensable in analyzing
stochastic processes (Ali, 2013). Autoregressive and moving average models are used frequently by
many disciplines. The autoregressive framework has very found applications in macroeconomics,
such as money supply, interest rate, price, inflation, exchange rates and gross domestic product and
in financial time series analysis. The autoregressive heteroskedastic modeling framework is used in
financial economics, such as asset pricing, portfolio selection, option pricing, and hedging and risk
management (Ali, 2013). Studies abound in the financial literature on modeling the return on stocks.
Usually, in the financial market, upward movements in stock prices are followed by lower volatili-
ties, while negative movements of the same magnitude are followed by much higher volatilities (Ali,
2013).

Engle (1982) developed the time varying variance model known as Autoregressive Conditional
Heteroskedastcity (ARCH) model. The ARCH model was the first model to assume that volatility
is not constant. Bollerslev (1986) extended the model to include the Autoregressive Moving Aver-
age (ARMA) structure as the Generalized Autoregressive Conditional Heteroskedasticity (GARCH)
model. Ali (2013) asserted that a number of studies have adopted the Autoregressive Conditional
Heteroskedasticity (ARCH) model or the Generalized Autoregressive Conditional Heteroskedasticity
(GARCH) model to explain volatility of the stock market. Some of these studies have transformed
and developed the Engel’s basic model to more sophisticated models, such as the integrated GARCH
(IGARCH), the threshold GARCH (TGARCH), the exponential GARCH (EGARCH), GARCH-in
mean (GARCH-M), etc. (Atoi, 2014; Grek, 2014). However these sophisticated models, in most
cases, fail to improve on the forecast accuracy of the original ARCH model.
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1.1 Outliers

In Statistics, an outlier is an observation point that is distant from the other observations. An outlier
may be due to variability in the measurement or experimental error. The later is sometimes excluded
from the data set. An outlier can cause serious problems in statistical analyses. In the former case,
one may wish to discard the outliers or use statistics that are robust to outliers, whereas in the later
case they indicate that the distribution has high skewness and that one should be very cautious in
using tools or intuitions that assume a normal distribution (Wikipedia, 2017).

There are two types of outliers, namely: innovation outlier (IO) (in which an outlier affects future
values of the series), and additive outlier (AO) (in which an outlier affects only the current obser-
vation) (McQuarrie and Tsai, 2003). It should be noted that additive outliers affect the forecast
performance of GARCH models such that the sum of squares increases as additive outlier increases
to a large number (McQuarrie and Tsai, 2003).

This study focuses on the impact of additive outliers on performance of GARCH family mod-
els. Consequently, some GARCH models are reviewed and the impacts of additive outliers on the
GARCH models are examined. Furthermore the study carried out simulations of the GARCH family
models assuming three levels of outliers (small, medium and large) at different time series length.
The simulation is replicated 1,000 times for each level of outliers and at different time series length
and the performance of the GARCH models is adjudged using the Mean Absolute Error (MAE) and
the Root Mean Square Error (RMSE).

1.2 Justification

In the search for appropriate forecasting models which seek to improve the forecast performance
in financial time series, the family of GARCH models become readily most sought after due to the
fact that most simple iid innovation models are unable to take into account the relevant information
which is available at time t ((Rossi, 2004). Since additive outliers affect forecast performance of
GARCH models such that the sum of squares increases as the additive outlier increases, this study
will reveal that the GARCH models are more robust in forecasting volatility when additive outliers
exist. The aim of this study is to compare the family of GARCH models when the problem of outliers
exists in a financial time series.

2. Literature review

2.1 The GARCH family models

The Autoregressive Conditional Heteroskedasticity (ARCH) model introduced by Fredrick Engel in
1982 was the first model that assumed that volatility is not constant. ARCH models are commonly
employed in modelling financial time series that exhibit time-varying volatility clustering, that is,
period of swings interspersed with periods of relative calm (Grek, 2014; Wikipedia, 2017).

Over the years there have been several modifications and extensions of the ARCH model.
Such modifications have resulted to the Generalized Autoregressive Conditional Heteroskedasticity
(GARCH) models. The GARCH model was proposed independently by Bollerslev (1986) and Tylor
(1986) in order to solve some of the disadvantages of the ARCH model. Some of the disadvantages
of the ARCH model include (Tsay, 2005):

i. Assuming model that positive and negative shocks have the same effects on volatility because
it depends on the square of the previous shocks, whereas in practice, it is well known that
price of a financial asset responds differently to positive and negative shocks.

ii. The ARCH model is rather restrictive. For instance, α2
1 of an ARCH(1) model must be in the

interval [0, 1/3] if the series has a finite fourth moment. The constraint becomes complicated
for higher order ARCH models. Which in practice, limits the ability of ARCH models with
Gaussian innovations to capture excess kurtosis.

iii. The inability of the ARCH model to provide any new insight for understanding the source of
variations of a financial time series. It only provides a mechanical way to describe the behavior
of the conditional variance without any indication about what causes such behavior to occur.
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iv. ARCH models are likely to overpredict the volatility because they respond slowly to large
isolated shocks to the return series.

Further studies on ARCH model are contained in Rossi (2004), Ragnarsson (2011) and Kelkay and
Yohannes (2014).

Nelson (1991) proposed the Exponential Generalized Autoregressive Conditional Heteroskedastic-
ity (EGARCH) model proposed. The EGARCH model overcomes some weaknesses of the GARCH
model in handling financial time series, such as the violation of non-negativity constraints imposed
on the parameters to be estimated. In particular, to allow for asymmetric effects between positive
and negative asset returns to be estimated.

The EGARCH(m, s) model, according to Tsay (2005), Dhamija and Bhalla (2010), Jiang (2012),
Ali (2013) and Grek (2014), can be written as

at = σtεt

ln(σ2t ) = w +

s∑
i

αi
|at−i|+ θiat−i

σt−i
+

m∑
j=1

βj ln(σ2t−j)

which gives EGARCH (1, 1) as

at = σtεt

ln(σ2t ) = w + α ([|at−1| − E(|at−1|)]) + θat−1 + β ln(σ2t−1)

where |at−1| − E(|at−1|) are iid and have mean zero. When the EGARCH model has a Gaussian

distribution of error term, then E(|εt|) =
√

2/π, which gives:

ln(σ2t ) = w + α
([
|at−1| −

√
2/π

])
+ θat−1 + β ln(σ2t−1)

The logarithm of the conditional variance in EGARCH signifies that the leverage effect is exponential
and not quadratic. Tsay (2005) asserted that the logarithmic transformation of volatility removes
the restriction on the parameters and to guarantee a positive variance.

The Nonlinear Generalized Autoregressive Conditional Heteroskedasticity (NGARCH) model
(Higgins and Bera, 1992, Hsieh and Ritchken, 2005, Duan, et al, 2006) is an important modifi-
cation of the GARCH model. This model exhibits the leverage effect and it has a very attractive
feature of stock return.

Another extension of the model includes the Glosten-Jagannathan-Runkle GARCH (GJR-
GARCH) model proposed by Glosten et al. (1993). The model assumes a specific parametric form
for the conditional heteroskedasticity in the zero mean white noise series. The Threshold GARCH
(TGARCH) model by Zakoian (1994) is similar to the GJR GARCH model. The TGARCH model
is commonly used to handle leverage effects (Atoi, 2014). This model does not use any restriction
on the parameters with a view to guaranteeing that the conditional variance is positive. The Inte-
grated Generalized Autoregressive Conditional Heteroskedasticity (IGARCH) model is a restricted
version of the GARCH model, in the sense that the persistent parameters sum up to one, and
imports a unit root to the GARCH process. The Quadratic Generalized Autoregressive Condi-
tional Heteroskedasticity (QGARCH) model by Sentana (1995) is used to model asymmetric effects
of positive and negative shocks. Hentschel (1995) proposed the family GARCH (fGARCH) model
as an omnibus model that nests a variety of other popular symmetric and asymmetric GARCH
models including the Asymmetric Power Autoregressive Conditional Heteroskedasticity (APARCH),
the Glosten-Jagannathan-Runkle Generalized Autoregressive Conditional Heteroskedasticity (GJR-
GARCH), Absolute Value Generalized Autoregressive Conditional Heteroskedasticity (AVGARCH),
Nonlinear Generalized Autoregressive Conditional Heteroskedasticity (NGARCH), and so on. The
Skew-Generalized Autoregressive Conditional Heteroskedasticity (SGARCH) model was introduced
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by De Luca, Genton and Loperfido (2005). It is a GARCH structure that takes into account the
heteroskedastic nature of financial time series. It allows for parsimonious modeling, which is using
as few predictor variables as possible to build a model which is adequate to accomplish the desired
level of explanation or prediction, of multivariate skewness. According to De Luca and Loperfido
(2012), all its elements are either null or negative, which is consistent with previous empirical and
theoretical findings.

3. Methodology

This study focuses on the GARCH models that are robust for forecasting the volatility of financial
time series data in the presence of outliers.

3.1 Autoregressive Conditional Heteroskedasticity (ARCH) family model

Every ARCH or GARCH family model requires two distinct specifications, namely: the mean and
the variance equations (Atoi, 2014). The mean equation for a conditional heteroskedasticity in a
return series, yt is given by (Atoi, 2014)

yt = Et−1(yt) + εt (1)

where εt = φσt. The mean equation in equation (1) also applies to other GARCH family models.
Et−1(•) is the expected value conditional on information available at time t − 1, while is the error
generated from the mean equation at time t and φt is the sequence of independent and identically
distributed random variables with zero mean and unit variance.

The variance equation for an ARCH(p) model is given by (Grek, 2014)

σ2t = w + α1a
2
t−1 + · · ·+ αpa

2
t−p (2)

It can be seen in the equation that large values of the innovation of asset returns have bigger impact
on the conditional variance because they are squared, which means that a large shock tends to follow
another large shock and that is the same way the clusters of the volatility behave. So the ARCH(p)
model becomes:

at = σtεt, σ2t = w + α1a
2
t−1 + · · ·+ αpa

2
t−p (3)

where εt ∼ N(0, 1) iid, w > 0 and αi ≤ 0 for i > 0. In practice, εt is assumed to follow the standard
normal or a standardized student-t distribution or a generalized error distribution (Tsay, 2005).

3.2 Asymmetric power ARCH

Given that (Rossi, 2004):

r = µ+ at, εt = σtεt−1, εt ∼ N(0, 1)

σδt = w +

p∑
i=1

αi (|at−i| − γiat−i)δ +

q∑
j=1

βjσ
δ
t−j (4)

where w > 0, δ ≥ 0, α ≥ 0, −1 < γi < 1, βj > 0, i = 1, 2, · · · , p, j = 1, 2, · · · , q. This model imposes a
Box-Cox transformation of the conditional standard deviation process and the asymmetric absolute
residuals. This is the model (Equation (4)) is called Asymmetric Power ARCH and it includes seven
other models (see Ding, Granger and Engel, 1993). The leverage effect is the asymmetric response
of volatility to positive and negative ”shocks”.
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3.3 Standard GARCH(p, q) (sGARCH) model

According to Rossi (2004), the asymmetric power ARCH model proposed by Ding, Engel and
Granger (1993) given below forms the basis for deriving the GARCH family models. The math-
ematical model for the GARCH(p,q) model is obtained from equation (4) by letting δ = 2 and
γi = 0, i = 1, 2, · · · , p. Thus:

at = σtεt, σ2t = w +

p∑
i=1

αia
2
t−i +

q∑
j=1

βjσ
2
t−j (5)

where at = rt − µt (rt is the continuously compounded log return series), and εt ∼ N(0, 1) iid, the
parameter αi is the ARCH parameter, βj is the GARCH parameter, w > 0, α ≥ 0, β ≥ 0 and∑max(p,q)

i=1 (αi + βi) < 1 (Rossi, 2004; Tsay, 2005; and Jiang, 2012).
The restriction on ARCH and GARCH parameters (αi, βj) suggests that the volatility (ai) is finite

and that the conditional standard deviation (σi) increases. It can be observed that if q = 0, then the
model GARCH parameter (βj) becomes extinct and what is left is an ARCH(p) model. To expatiate
on the properties of GARCH models, the following representation is necessary. Let ηt = a2t − σ2t so
that σ2t = a2t − ηt. By substituting σ2t−i = a2t−i− ηt−i, (i = 0, · · · , q) into Eq. (5), the GARCH model
can be rewritten as

αt = α0 +

max(p,q)∑
i=1

(αi + βi)a
2
t−i + ηt −

q∑
j=1

βjηt−j (6)

It can be seen that {ηt} is a martingale difference series (i.e., E(ηt) = 0 and cov(ηt, ηt−j) = 0,
for j ≥ 1). However, {ηt} in general is not an iid sequence (Tsay, 2005). A GARCH model can
be regarded as an application of the Autoregressive Moving Average (ARMA) idea to the squared
series a2t . Using the unconditional mean of an ARMA model, results in this

E(a2t ) =
α0

1−
∑max(p,q)

i=1 (αi + βi)
.

provided that the denominator of the prior fraction is positive (Tsay, 2005). When p = 1 and q = 1,
we have GARCH(1, 1) model given by:

at = σtεt

σ2t = w + α1a
2
t−1 + β1σ

2
t−1. (7)

3.4 GJR-GARCH(p, q) model

The Glosten-Jagannathan-Runkle GARCH (GJRGARCH) model, which is a model that attempts
to address volatility clustering in an innovation process, is obtained by letting δ = 2. When δ = 2
and 0 ≤ γi < 1, equation (4) becomes

σ2t = w +

p∑
i=1

αi (|εt−i| − γiεt−i)2 +

q∑
j=1

βjσ
2
t−j

= w +

p∑
i=1

αi

(
|εt−i|2 + γ2i ε

2
t−i − 2γi |εt−i| εt−i

)
+

q∑
j=1

βjσ
2
t−j . (8)
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σ2t =


w +

∑p
i=1 α

2
i (1 + αi)

2ε2t−i +
∑q

j=1 βjσ
2
t−j , εt−i < 0

w +
∑p

i=1 αi(1 + αi)
2ε2t−i +

∑q
j=1 βjσ

2
t−j , εt−i > 0

That is,

σ2t = w +

p∑
i=1

αi(1− γi)2ε2t−i +

p∑
i=1

αi
{

(1 + γi)
2 − (1− γi)2

}
S−
i ε

2
t−i +

q∑
j=1

βjσ
2
t−j

σ2t = w +

p∑
i=1

αi(1− γi)2ε2t−i +

q∑
j=1

βjσ
2
t−j +

p∑
i=1

4αiγiS
−
i ε

2
t−i

where

S−
i =

1, if εt−i < 0

0, if εt−i ≥ 0

Now define α∗
i = αi(1− γi)2 and γ∗i = 4αiγi, then

σ2t = w +

p∑
i=1

αi(1− γi)2ε2t−i +

q∑
j=1

βjσ
2
t−j +

p∑
i=1

γ∗i S
−
i ε

2
t−i (9)

which is the GJR-GARCH model (Rossi, 2004). But when −1 ≤ γi < 0, then

σ2t = w +

p∑
i=1

αi (|εt−i| − γiεt−i)2 +

q∑
j=1

βjσ
2
t−j

= w +

p∑
i=1

αi

(
|εt−i|2 + γ2i ε

2
t−i − 2γi |εt−i| εt−i

)
+

q∑
j=1

βjσ
2
t−j .

σ2t =


w +

∑p
i=1 α

2
i (1 + αi)

2ε2t−i +
∑q

j=1 βjσ
2
t−j , εt−i < 0

w +
∑p

i=1 αi(1 + αi)
2ε2t−i +

∑q
j=1 βjσ

2
t−j , εt−i > 0

σ2t = w +

p∑
i=1

αi(1 + γi)
2ε2t−i +

p∑
i=1

αi
{

(1− γi)2 − (1 + γi)
2
}
S+
i ε

2
t−i +

q∑
j=1

βjσ
2
t−j

σ2t = w +

p∑
i=1

αi(1 + γi)
2ε2t−i +

q∑
j=1

βjσ
2
t−j +

p∑
i=1

αi
{

1 + γ2i − 2γi − 1− γ2i − 2γi
}
S+
i ε

2
t−i
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where

S+
i =

1, if εt−i > 0

0, if εt−i ≤ 0

Also define α∗
i = αi(1 + γi)

2 and γ∗i = −4αiγi, then

σ2t = w +

p∑
i=1

α∗
i ε

2
t−i +

q∑
j=1

βjσ
2
t−j +

p∑
i=1

γ∗i S
+
i ε

2
t−i (10)

which allows positive shocks to have a stronger effect on volatility than negative shocks (Rossi,
2004). But when p = q = 1, the GJR-GARCH(1,1) model will be written as

σ2t = w + αε2t + γSiε
2
t−1 + βσ2t−1 (11)

3.5 IGARCH(1, 1) model

The integrated GARCH (IGARCH) models are unit-root GARCH models. The IGARCH (1, 1)
model is specified in Tsay (2005) and Grek (2014) as

at = σtεt; σ2t = α0 + β1σ
2
t−1 + (1− β1)a2t−1 (12)

where ε ∼ N(0, 1) iid, and 0 < β < 1. Ali (2013) used αi to denote 1 − βi. This model is an
exponential smoothing model for the

{
a2t
}

series. To see this, rewrite the model as

σ2t = (1− β1)a2t−1 + β1σ
2
t−1

= (1− β1)a2t−1 + β1
[
(1− β1)a2t−2 + β1σ

2
t−2

]
= (1− β1)a2t−1 + (1− β1)β1a2t−2 + β21σ

2
t−2 (13)

By repeated substitutions, we have

σ2t = (1− β1)(a2t−1 + β1a
2
t−2 + β21a

3
t−3 + · · · ) (14)

which, according to Tsay (2005), β1 is the well-known exponential smoothing formation with being
the discounting factor.

3.6 TGARCH(p, q) model

The Threshold GARCH model is another model used to handle leverage effects. A TGARCH(p, q)
model is given by the following equation:

σ2t = α0 +

p∑
i=1

(αi + γiNt−i)a
2
t−i +

q∑
j=1

βjσ
2
t−j (15)

where Nt−i is an indicator for negative at−i, that is,

Nt−i =

1, if at−i < 0

0, if at−i ≥ 0
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and αi, γi and βj are nonnegative parameters satisfying conditions similar to those of GARCH
models (Tsay, 2015). When p = 1, q = 1 the TGARCH(1, 1) model becomes:

σ2t = w + (α+ γNt−1)a
2
t−1 + βσ2t−1 (16)

3.7 NGARCH(p, q) model

The Nonlinear Generalized Autoregressive Conditional Heteroskedasticity (NGARCH) model has
been presented in the literature (see Hsieh and Ritchken (2005), Lanne and Saikkonen (2005),
Malecka (2014) and Kononovicius and Ruseckas (2015)). The NGARCH model is given as:

ht = w +

q∑
i=1

αiε
2
t−i +

q∑
i=1

γiεt−i +

p∑
j=1

βjht−j (17)

where ht is the conditional variance, and w, β and α, satisfy w > 0, β ≥ 0 and α ≥ 0. The model
can also be expressed as

σt = w +

q∑
i=1

αiε
2
t−i +

q∑
i=1

γiεt−i +

p∑
j=1

βjσt−j (18)

3.8 SGARCH(p, q) model

The Skew-Generalized Autoregressive Conditional Heteroskedasticity (SGARCH) model can be writ-
ten as:

Yt = ηtεt

η2t = δ0 +

q∑
i=1

δi(ηt−iεt−i)
2 +

q+p∑
j=q+1

δjη
2
t+q−j (19)

where Yt is the leading market return at time t, {εt} ∼ i.i.d.N(0, 1) is the innovation (or shock) of
the market, and δ0 is hypothesized to be Gaussian. η2t is assumed to be positive and the remaining
parameters are nonnegative in order to ensure that is positive (De Luca and Loperfido, 2012).

3.9 Simulation procedure

The simulation procedure here considers the following equations of GARCH (1,1):

εt = σtzt

σ2t = a0 + α1ε
2
t−1 + β1σ

2
t−1. (20)

The case simulated is the case of financial time series where there are outliers at three levels, namely:
small outlier values as 0.000005, 0.00006; medium outlier values as 10,50 and large outlier values as
100,500, at the following different time series length: 250, 500, 750, 1000, 1250 and 1500. By the level
of the outliers we mean the extreme value that may be small, medium or very large in magnitude
that is very different in size compared to other observations in the financial time series. Our choice of
simulation is because real life financial time series may not exhibit all the forms of additive outliers
characteristics we intend to study in the work. The rugarch package of the R software was used to
execute the simulation.
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3.10 Forecast assessment

The following are the criteria for forecast assessments used:

(1) Mean Absolute Error (MAE) has a formula

MAEj =

∑n
i=1 |ei|
n

.

This criterion measures deviation from the series in absolute terms, and measures how much
the forecast is biased. This measure is one of the most common ones used for analyzing the
quality of different forecasts (Caraiani, 2010).

(2) The Root Mean Square Error (RMSE) is given as

RMSEj =

√∑n
i (yi − yf )2

n

where yi is the time series data and yf is the forecast value of y (Caraiani, 2010).

For the two measures above, the smaller the value, the better the fit of the model (Cooray, 2008).
In this simulation study,

RMSE =

∑N
j=1RMSEj

N

and

MAE =

∑N
j MAEj

N
,

where N = 1000, is the number of iterations or replications in the simulation study. The use of MAE
and RMSE in this study rather than Schwarz Information Criterion (SIC) or other information
criteria was by convenience, however it has been shown that model selection measures based on
median/mean of forecasts are better that measure based on penalizing like information criteria in
the study of volatility (Bal, et al, 2016).

4. Results and discussion

4.1 Results

The results of the simulation carried out are presented in Table 1 to Table 8 in the Appendix. Using
RMSE criterion as presented in Table 9 in the Appendix. iGARCH is suitable when the outlier
is small in magnitude while sGARCH and gjrGARCH are suitable when the outlier is medium in
magnitude; gjrGARCH is suitable when the outlier is large in magnitude. In the overall, gjrGARCH
outperformed all the other GARCH models.

Using MAE criterion as presented in Table 10 in the Appendix. iGARCH is suitable when the out-
lier is small in magnitude while sGARCH and gjrGARCH are suitable when the outlier is medium in
magnitude; gjrGARCH is suitable when the outlier is large in magnitude. In the overall, gjrGARCH
outperformed all the other GARCH models.

4.2 Discussion

4.2.1 GARCH models performance in the presence of outliers using the Root Mean Square Error
(RMSE) from the results of the simulation

When the additive outlier was small, iGARCH outperformed the other models at time series lengths
(T) of 250, 750 and 1500, and TGARCH performed better than the other models at time series
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length (T) of 500 and 1000, while NGARCH performed better than the other models at time series
length (T) of 1250. For medium level of additive outliers, it can be clearly seen that the GARCH
models that dominated were sGARCH and gjrGARCH. Whereas sGARCH performed better at
time series lengths T = 250, T = 500 and T = 750, gjrGARCH outperformed the other models at
T = 1000, T = 1250 and T = 1500. For the large level of outliers, gjrGARCH dominated, performing
better at time series lengths (T) of 500, 750, 1250 and 1500, while TGARCH performed better at
time series length (T) of 250, and sGARCH outperformed the other models at T = 1000.

4.2.2 GARCH models performance in the presence of outliers using the Mean Absolute Error
(MAE) from the results of the simulation

For the small level of additive outliers, iGARCH dominated as it outperformed the other models at
time series lengths (T) of 250, 750 and 1500. TGARCH performed better than the other models at
time series length (T) of 500 and 1000, while NGARCH outperformed the other models at time series
length (T) of 1250. For the medium level of additive outliers, it can also be seen that sGARCH and
gjrGARCH dominated. While sGARCH performed better at time series lengths T = 250, T = 500
and T = 750, gjrGARCH on the other hand outperformed the other models at T = 1000, T = 1250
and T = 1500. For the large level of outliers, gjrGARCH dominated again, performing better at
time series lengths (T) of 500, 1250 and 1500, sGARCH performed better than the other models at
time series length (T) of 750 and 1000, while TGARCH outperformed the other models at T = 250.

5. Conclusion

This study has shown that different models performed better at different levels of outliers and at
different time series lengths. This is in line with previous studies. For instance, Atoi (2014) modeled
the volatility of stock returns using daily closing data of Nigerian Stock Exchange and found that
GARCH (1,1), PGARCH (1,1,1) and EGARCH (1,1) with student’s t distribution, and TGARCH
with Generalized Error Distribution (GED) were the four best fitted models based on Schwarz
Information Criterion. The present study also supports the conclusions in Grek (2014), Chen, Min
and Chen (2013), Dijk, Franses and Lucas (1999) and Demos (2000) that different models performed
differently under different conditions. Secondly, the study has shown that in the presence of additive
outliers, gjrGARCH was superior, especially for medium and large levels of outliers for large time
series lengths. Again the study established that for lower time series length, sGARCH was superior
irrespective of whether MAE or RMSE was used in the assessment. The study recommends that
investors, financial analysts and researchers interested in stock prices and asset return should adapt
gjrGARCH and sGARCH when there are outliers in their data.

The contribution of this study to the literature as follows:

i. The fGARCH models in this study revealed their performance varies with the different levels
of outliers.

ii. iGARCH is suitable when the outlier is small in magnitude.
iii. sGARCH and gjrGARCH are suitable when the outlier is medium in magnitude.
iv. gjrGARCH is suitable when the outlier is large in magnitude.
v. The Root Mean Square Error (RMSE) and Mean Absolute Error (MAE) criteria produced

similar results and conclusion.

References

Ali, G. (2013). EGARCH, GJR-GARCH, TGARCH, AVGARCH, NGARCH, IGARCH, and
APARCH models for pathogens at marine recreational sites. Journal of Statistical and Econometric
Methods, 2(3): 57-73.

Atoi, N. V. (2014). Testing volatility in Nigeria stock market using GARCH models. CBN
Journal of Applied Statistics, 5: 65-93.



55 Emenogu et al.

Bal, C., Demir, S., and Aladag, C. H. (2016). A comparison of different model selection cri-
teria for forecasting EURO/USD exchange rates by feed forward neural network. International
Journal of Computing, Communications & Instrumentation Engg., 3(2): 271-275.

Bollerslev, T. (1986). Generalized autoregressive conditional heteroskedasticity. Journal of
Econometrics, 31: 307-327.

Caraiani, P. (2010). Forecasting Romanian GDP using a BVAR model. Romanian Journal of
Economic Forecasting, 4:76-87.

Chen, S., Min, W. and Chen, R. (2013). Model identification for time series with dependent
innovations. Statistica Sinica, 23: 873–899.

Cooray, T. M. J. A. (2008). Applied Time series Analysis and Forecasting. New Delhi: Narosa
Publishing House.

De Luca, G., Genton, M. G. and Loperfido, N. (2005). A multivariate skew-GARCH model.
Advances in Econometrics, 20: 33–56.

De Luca, G. and Loperfido, N. (2012). Modeling multivariate skewness in finan-
cial returns: a SGARCH approach. The European Journal of Finance, 21: 1 -19.
http://dx.doi.org/10.1080/1351847X.2011.640342.

Demos, A. (2000). Autocorrelation function of conditionally heteroskedastic in mean models.
A Paper presented at the 13th ESRC Econometric Study Group Annual Conference, Bristol,
England.

Dijk, D. V., Franses, P. H. and Lucas, A. A. (1999). Testing for ARCH in the presence of
additive outliers. Journal of Applied Econometrics, 14(5): 539-562.

Ding, Z., Granger, C. W. J. and Engle, R. F. (1993). A long memory property of stock
market returns and a new model. Journal of Empirical Finance, 1: 83-106.

Duan, J. C., Gauthier, G., Simonato, J. G. and Sasseville, C. (2006). Approximating the
GJR-GARCH and EGARCH option pricing models analytically. Journal of Computational Fi-
nance, 9(3): 1 -29.

Engle, R. F. (1982). Autoregressive conditional heteroskedasticity with estimates of the vari-
ance of United Kingdom inflation. Econometrica, 50: 987-1007.

Glosten, L. R., Jagannathan, R. and Runkle, D. E. (1993). On the relation between the ex-
pected value and the volatility of the national excess return on stock. Journal of Finance, 48(5):
1779-1801.

Grek, A. (2014). Forecasting accuracy for ARCH models and GARCH(1,1) family which
model does best capture the volatility of the Swedish stock market? Statistics Advanced Level
Theses, Orebro University.

Hentschel, L. (1995). All in the family Nesting symmetric and asymmetric GARCH models.
Journal of Financial Economics, 39: 71-104.

Higgins, M. L. and Bera, A. (1992). A class of nonlinear ARCH models. International Eco-
nomic Review, 33(1): 137–158.

Hsieh, K. C. and Ritchken, P. (2005). An empirical comparison of GARCH option pricing
models. Review of Derivatives Research, 8(3): 129 -150.



On the performance of GARCH family models ... 56

Jiang, W. (2012). Using the GARCH model to analyse and predict the different stock mar-
kets. Master Thesis in Statistics, Uppsala University Sweden.

Kelkay, B. D. and G. Yohannes, E. (2014). The application of Garch family models to some
agricultural crop products in Amhara national regional state. Journal of Economics and Sustainable
Development, 5: 24-35.

Kononovicius, A. and Ruseckas, J. (2015). Nonlinear GARCH model and 1/f noise. Physica
A 427: 74-81. DOI: 10.1016/j.physa.2015.02.040

Lanne, M. and Saikkonen, P. (2005). Nonlinear GARCH models for highly persistent volatil-
ity. Econometrics Journal, 8(2): 251-276.

Malecka, M. (2014). GARCH class models performance in context of high market volatility.
ACTA Universitatis Lodziensis Folia Oeconmica, 3: 253–266.

McQuarrie, A. D. and Tsai, C. L. (2003). Outlier detection in autoregressive models. Jour-
nal of Computational and Graphical Statistics, 12(2): 450-471.

MaJose, R.V. (2010). Volatility models with leverage effect. A Doctoral Thesis, Universidad
Carlos III De Madrid.

Nelson, D. (1991). Conditional heteroskedasticity in asset returns: A new approach. Econo-
metrica, 59(2): 394-419.

Ragnarsson, F. J. (2011). Comparison of value-at-risk estimates from GARCH models. Mas-
ter of Science Thesis, Copenhagen Business School, Handelshojskolen, Denmark.

Rossi, E. (2004). Lecture notes on GARCH models. University of Pavia.

Sentana, E. (1995). Quadratic ARCH models. The Review of Economic Studies, 62(4): 639-
661.

Tsay, R. S. (2005). Analysis of Financial Time Series (2nd Edition). New Jersey: John Wiley & Sons.

Taylor, S. (1986). Modelling Financial Time Series. Wiley, Chichster.

Wikipedia (2017). Autoregressive conditional heteroskedasticity (ARCH).
https://en.wikipedia.org/wiki. (accessed 2017/07/10)

Zakoian, J. M. (1994). Threshold heteroskedasticity models. Journal of Economic Dynamics
and Control, 18(5): 931-955.



57 Emenogu et al.

Appendix

Table 1: The RMSE and MAE values from the fGARCH family model at different levels of outlier of 0.000005, 0.00006 at different time 

series lengths 

Outlier 0.000005,0.00006 

Time series length 

(T) 

250 500 750 1000 1250 1500 

Model RMSE MAE RMSE MAE RMSE MAE RMSE MAE RMSE MAE RMSE MAE 

sGARCH 4.931399 61.202956 7.021094 123.643002 8.618935 185.975292 9.945382 247.901383 11.15621 310.73484 12.21861 372.94698 

gjrGARCH 4.91953 61.17128 7.015205 123.499443 8.60339 185.62731 9.967985 248.371364 11.14907 310.66572 12.22246 372.89526 

iGARCH 4.890762 60.848528 7.03993 123.91656 8.57163 184.87379 9.971203 248.29886

6 

11.1452 310.4949 12.20729 372.77983 

TGARCH 4.936581 61.365738 6.998018 123.271838 8.626176 186.112062 9.928296 247.50223

5 

11.14536 310.59719 12.22121 372.87911 

NGARCH 4.90386 60.89776 7.007123 123.314485 8.598005 185.359426 9.977334 248.561108 11.11676 309.78808 12.21001 372.83915 

 

Table 2: The Ranks of the RMSE and MAE values from the fGARCH family model at different levels of outlier of 0.000005, 0.00006 at 

different time series lengths 

Outliers 0.000005,0.00006 

Time series length 
(T) 

250 500 750 1000 1250 1500 

Model RMSE MAE RMS
E 

MAE RMSE MAE RMSE MAE RMSE MAE RMSE MAE 

sGARCH 4 
3 
1 
5 
2 

4 
3 
1 
5 
2 

4 
3 
5 
1 
2 

4 
3 
5 
1 
2 

4 
3 
1 
5 
2 

4 
3 
1 
5 
2 

2 
3 
4 
1 
5 

2 
4 
3 
1 
5 

5 
4 
2 
3 
1 

5 
4 
2 
3 
1 

3 
5 
1 
4 
2 

5 
4 
1 
3 
2 

gjrGARCH 

iGARCH 

TGARCH 

NGARCH 
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Table 3: The RMSE and MAE values from the fGARCH family model at different levels of outlier of 10, 50 at different time series lengths 

Outlier  10,50            

Time Series 
Length (T) 

250 500 750 1000 1250 1500 

Model  RMSE MAE RMSE MAE RMSE MAE RMSE MAE RMSE MAE RMSE MAE 

sGARCH 70.80231  118.59578 70.46127  118.58901 69.83468  118.25637 70.16223  119.31764 69.81693  119.30811 70.51907  121.11153 

gjrGARCH 71.69847  120.10907 70.6713  118.9951 69.96143  118.38869 68.57628  116.64949 67.85942  116.01714 69.43985  119.28377 

iGARCH 72.18174  123.33328 72.60727  124.69260 72.2639  123.0646 72.10861  122.67465 72.04126  123.14981 72.10363  123.82272 

TGARCH 71.9265  121.2603 72.07572  121.51990 72.07916  122.15585 71.73488  122.01710 72.03237  123.12899 72.10291  123.90638 

NGARCH 71.67376  120.60028 71.60875  120.43185 70.08789  118.50482 70.44886  119.71692 69.80573  119.24967 69.94543  120.09876 

 

Table 4: The Ranks of the RMSE and MAE values from the fGARCH family model at different levels of outlier of 10, 50 at different time series 

lengths 

 outliers 10,50  

Time 
series 
length (T) 

250 500 750 1000 1250 1500 

Model RMSE MAE RMSE MAE RMSE MAE RMSE MAE RMSE MAE RMSE MAE 

sGARCH 1 
3 
5 
4 
2 

1 
2 
5 
4 
3 

1 
2 
5 
4 
3 

1 
2 
5 
4 
3 

1 
2 
5 
4 
3 

1 
2 
5 
4 
3 

2 
1 
5 
4 
3 

2 
1 
5 
4 
3 

3 
1 
5 
4 
2 

3 
1 
5 
4 
2 

3 
1 
5 
4 
2 

3 
1 
4 
5 
2 

gjrGARC
H 

iGARCH 

TGARCH 

NGARCH 

 

Table 5: The RMSE and MAE values from the fGARCH family model at different levels of outlier of 100, 500 at different time series lengths 

OUTLIER  100,500            

 250 500 750 1000 1250 1500 

 RMSE MAE RMSE MAE RMSE MAE RMSE MAE RMSE MAE RMSE MAE 

SGARCH 723.8332  1223.1663 717.2956  1197.7994 711.0493  1185.5396 709.5818  1183.6321 708.9052  1183.6610 704.5643  1176.5473 

GJRGARCH 730.0609  1276.7807 711.0275  1184.9110 704.8452  1195.3627 713.1035  1192.8623 703.415  1175.799 698.0259  1165.7791 

IGARCH 767.9728  1500.6277 721.7786  1225.9165 735.1428  1377.8925 768.0416  1503.2967 726.2934  1237.5534 738.1277  1342.4379 

TGARCH 718.2462  1211.7168 718.904  1210.781 720.2065  1205.1220 721.221  1227.972 720.7309  1204.4912 721.0888  1204.4408 

NGARCH 871.6781  1600.8879 871.6815  1601.6008 721.7176  1241.8651 721.1639  1203.0861 721.1041  1203.5297 721.1119  1204.3342 

 

Table 6: The Ranks of the RMSE and MAE values from the fGARCH family model at different levels of outlier of 100, 500 at different time series 

lengths 

outliers 100, 500  

Time series 
length (T) 

250 500 750 1000 1250 1500 

Model RMSE MAE RMSE MAE RMSE MAE RMSE MAE RMSE MAE RMSE MAE 

sGARCH 2 
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4 
1 
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2 
3 
4 
1 
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1 
4 
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2 
1 
5 
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3 
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1 
5 
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2 
1 
5 
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gjrGARCH 

iGARCH 

TGARCH 

NGARCH 
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Table 7: The Performances of the fGARCH family models at different levels of outliers and at different time series 

lengths using RMSE 

Forecast Statistics: RMSE 

Size of 

Outlier  

Time series length (T) 

250 500 750 1000 1250 1500 

Small  iGARCH TGARCH iGARCH TGARCH NGARCH iGARCH 

Medium sGARCH sGARCH sGARCH gjrGARCH gjrGARCH gjrGARCH 

Large TGARCH gjrGARCH gjrGARCH sGARCH gjrGARCH gjrGARCH 

 

Table 8: The Performances of the fGARCH family models at different levels of outliers and at different time series 

lengths using MAE  

Forecast Statistic: MAE 

Size of Outlier  Time series length (T) 

250 500 750 1000 1250 1500 

Small  iGARCH TGARCH iGARCH TGARCH NGARCH iGARCH 

Medium  sGARCH sGARCH sGARCH gjrGARCH gjrGARCH gjrGARCH 

Large TGARCH gjrGARCH sGARCH sGARCH gjrGARCH gjrGARCH 

 

Table 9: The Overall Performances Rating of the fGARCH family models at different levels of outliers and at 

different time series lengths using RMSE  

 Small Medium Large Total  

sGARCH - 16.6% 5.6% 22.2% 

gjrGARCH - 16.6% 22.2% 38.8% 

iGARCH 16.7% - - 16.7% 

TGARCH 11.1% - 5.6% 16.7% 

NGARCH 5.6 - - 5.6% 
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Table 10: The Overall Performances Rating of the fGARCH family models at different levels of outliers and at 

different time series lengths using MAE  

 Small Medium Large Total  

sGARCH - 16.6% 11.1% 27.7% 

gjrGARCH - 16.6% 16.7% 33.3% 

iGARCH 16.7% - - 16.7% 

TGARCH 11.1% - 5.6% 16.7% 

NGARCH 5.6 - - 5.6% 

 


