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1. Introduction

it is well known that not all observations in a data set play equal roles when fitting a regression
model. Occasionally a single or a subset of a data set exerts a disproportionate influence on the
fitted regression model. that is, the parameter estimates may depend more on the influential sub set
than the majority of the data. Belslyey et al. (1980) defined an influential observation as one which
either individually or together with several other observations has demonstrably large impact on the
calculated values of of various estimates, than is the case of most of the observations. Outlier may
exist in a data set. Although it is not all outliers that need to have undue influence on the estimation
of the parameters in a regression model (Andrew and Pregibon, 1978). Since not all outliers matter,
examining residual alone might not lead to the detection of influential observations. Other ways of
detecting influential observations are needed. Stevens (1984) discussed the four diagnostics that are
useful in identifying outliers namely: the studentized residual, the hat element, the Cook’s distance
and the Mahalanobis distance. An important fact is that outliers may not necessarily be influential
on the regression coefficients.

Regression diagnostics may be used in the identification of influential data points and multi-
collinearity (Besley et al.,1980). This approach includes methods of exploratory data analysis. Mul-
ticollinearity can be detected using several diagnostics as follows:

• Eigen-structure of X ‘X: let λ1, λ2, λ3, ..., λp be the eigenvalues of X ‘X (in correlation
form), where X is the independent variables. If at least one eigenvalue is close to zero, then
multicollinearity exists (Greene, 1993, Walker, 1999).
• Condition Number (CN): Condition number is given by:

CN =

√
λmax
λmin

(1)

where λmax is the largest eigenvalue and λmin is the smallest eigenvalue. If CN lies between5
and 30, it is considered that multicollinearity exists, (Vinod and Ullah, 1981).
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• Variance Inflation Factor(VIF): This is computed as:

V IFi =
1

1−R2
j

; (2)

j = 1, 2, · · · , p, where R2
j is the coefficient of multiple determination in the regression pro-

duced by regressing an explanatory variable the xi , against the remaning variables xj(j, 6= i).

Several diagnostic methods have been developed to detect influential observations. Firstly, Cook
(1977) introduced Cook’s Distance, (Di), which is based on deleting the observations one after the
other and measuring their effect on the linear regression model. Other measures developed on the
idea of Cook’s Distance include: Modified Cook’s Distance (D∗i ), Difference in Fits (DFFITs) by
Welsch and Kuh (1977), Difference in Betas (DFBETAS) by Besley et al. (1980).

The plan of this paper is as follows. Section 2 discusses influential observations. Section3 contains
the methodology used for for the study. Section 4 presents the illustration, while section 5 discusses
the results. Finally, Section 6 concludes the paper and suggests area for further studies.

2. Influential Observation

In regression analysis, unusual observations are generally either outlier or influential data point.
Hawkins (1980), pointed out that an outlier is an observation that deviates so much from other
observations as to arouse suspicion. On the other hand, an influential observation is one which
either individually or together with several other observations has demonstrably large impact on
the calculated values of various estimates, than is the case of most of other observations (Belsley
et al, 1980). The effect of influential observations on estimated values has been studied by several
authors, Cooks (1977), Cook and Weisbery (1980), Hampel (1985), Brade (1997), Flores (2015) and
Genton and Hall (2016). There are several sources of influential observations. It could be as a result
of improper record of data either at the source or in the transcription to computer readable form.
The influence of an observation is measured by the effect it produces on the fit when it is deleted in
the fitting process. The deletion is always done one point at a time. Let β̂1(i), β̂2(i) ... β̂p(i) denote
the regression coefficients obtained when the ith observation is deleted (i = 1, 2, · · · , n). Let ŷ1(i),

ŷ2(i), ... , ŷn(i) and σ2
i be the predicted values and residual mean square respectively when the ith

observation is dropped. Note that

ym(i) = β0(i) + β̂1(i)xm1 + β̂2(i)xm2 + ...+ β̂p(i)xmp (3)

is the fitted value for observation m when the fitted equation is obtained with ith observation deleted.
The differences produced in quantities such as (β̂j − β̂j(i)) and (ŷj − ŷj(i)) is usually considered.
Examination of the data and the ability to find influential observations can be beneficial to reveal
spurious observations that might be as a result of error during data collection or the processing of
data. It makes the researcher aware of the possibility that some part of the data might come from
another regime or sub population that have very different features compared to the population under
study as well as help uncover features of the data that could cause difficulty in fitting a regression
model.

3. Methodology

To identify influential data points, we adopt the following single-case influential measures.
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3.1 Cook’s distance (Cook, 1977):

It measures the difference between the fitted values obtained by deleting the ith observation. The
Cook’s Distance is defined as;

Di =

∑n
j=1(ŷj − ŷj(i))
σ̂2(p+ 1)

(4)

Di =
r2
i

p+ 1
∗ hii

1− hii
(5)

where ri = ei
σ
√

1−h and hii is the leverage of the ith observation estimated by hii = X(X ‘X)−1X ‘.

3.2 DFFITsi (Welsch and Kuh, 1977)

The accronym DFFITs stands for the difference in Fits. DFFITs is used to identify influential data
points. it quantifies the number of standard deviations that the fitted value changes when the ith
data point is omitted. It is the scaled distance between the ith fitted value obtained from the full
data and the ith fitted value obtained by deleting the ith observation.

DFFITSi =
xi(β̂ − β̂i)
SE(xiβ̂)

(6)

This can be expressed as;

DFFITsi = r∗i

√
hii

1− hii
, (7)

(i = 1, 2, .... n), where r∗i is the standardized residual defined as r∗i = ei
σ(i)
√

1−hii

3.3 Hadi’s influence measure (Hadi, 1992)

This is a measure of the influence of the ith observation. The measure is constructed on the fact that
influential observations are outliers in the response variables or in the prdictors or both. Accordingly,
the influence of the ith observation is measured by

Hi =
hii

1− hii
+

p+ 1

1− hii
d2
i

1− 1d2
i

(8)

i = 1, 2, .... n where di = ei√
SSE

is called normalized residual.

3.4 DFBETASij (Belsley et al., 1989)

DFBETAS measures the difference in each parameter estimate with and without the influential data
point. It is used to ascertain which observation influences a specific regression coefficient.

DFBETASij =
bi − bi(i)√
S2

(i)(X
‘X)−1

ij

(9)
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3.5 Kuh and Welsch ratio (COVRATIO)

The COVRATIO statistic measures the change in the determinant of the covariance matrix of the
estimates by deleting the ith observation. This influential measure is given as (Belsley et al., 1980)

COV RATIO =
det(s2

i (X
‘
iX)−1

det(s2(X ‘X)−1
(10)

This measure can also be expressed as;

COV RATIO =
(n−p

‘−r2i
n−p‘−1 )

1− hii
(11)

where n is the sample size, p is the number of independent variables.

Table 1: The measure criteria for the listed influential measures.

Method Criteria
Cook’s Distance D > Fα(p,n−p)

Welsch and Kuh Distance WK > 2( pn)
1

2

Kuh and Welsch ratio KWR > 3( pn)
Hadi’s Meadure H > (mean(h) + 3(sd(h)))

Dfbetas Df > 2

(n)
1
2

source: Ullah and Pashal (2009)

4. Illustration

Economic indicator data from the Central Bank of Nigeria (CBN) Statistical Bulletin 2010 will
be used. The data consist of Gross Domestic Product as dependent variable (y) and ten (10)
independent variable namely: Money Supply (x1), Credit to Private Sectors (x2), Exchange Rate
(x3), External Reserve (x4), Agricultural Loan (x5), Foreign Reserve (x6), Oil Import (x7), Non
Oil Import (x8), Oil Export (x9) and Non Oil Export (x10). The data set is subjected to test for
multicollinearity using Variance Infation Factor (V IF ), eigen-value of the independent variable (λ),
tolerance value (T ) and condition number (CN). The data used for the study shown in Table 2.

Table 2: GDP and other economic variables
S/No (y) (x1) (x2) (x3) (x4) (x5) (x6) (x7) (x8) (x9) (x10)

1 0 14471 8570 0.61 56195 35642 23863 120 12720 10681 343
2 53659 15787 10668 0.673 12324 31764 18977 226 10545 8003 203

3 57963 17688 11668 0.724 7171 36308 16406 172 8732 7201 301
4 64326 20106 12463 0.765 5480 24655 16266 282 6896 8841 247
5 73542 22299 13070 0.894 10998 44244 18783 52 7011 11224 497
6 74542 23806 15247 2.021 18922 68417 14904 914 5070 8369 552
7 111913 27574 21083 4.018 62554 102153 48222 3170 14692 28209 2152
8 147941 38357 27326 4.537 72267 118611 52639 3803 17643 28435 2757
9 228451 45903 30403 7.392 43953 129300 88831 4672 26189 55017 2954

10 281550 52857 334584 8.038 40293 98494 155604 6073 39645 106627 3260
11 329071 75401 41352 9.909 48620 82107 211024 7772 81716 116858 4677
12 555446 111112 58123 17.298 33392 88032 348763 19562 123590 201384 4227

13 715242 165339 127118 22.051 58824 80846 384400 41136 124493 213779 4991
14 945557 230293 143424 21.886 95329 103186 3688480 42350 120439 200710 5349
15 2008564 289091 180005 21.886 32345 164165 1705789 155826 599302 927565 23096
16 2799036 345854 238597 21.886 25896 225503 1872170 162179 400448 1286216 23328
17 2906625 413280 316207 21.886 73492 242038 2087379 166903 678814 1212499 29163

18 2816406 488146 351956 21.886 93777 215697 1589275 175854 661565 717787 34070
19 3312241 628952 431168 92.693 63709 246083 2051486 211662 650854 1169477 19493
20 4717338 878457 530373 102.105 91089 361450 2930746 220818 764205 1920900 24823

21 4909526 12699322 764962 111.943 123330 728545 3226134 237107 1121074 1839945 28009
22 7128203 1508173 930494 120.97 103104 1051590 3256873 361710 1150985 1649446 94732
23 8742647 1952933 1096536 129.356 91702 1164460 5168122 398922 1681313 2993110 94776
24 1673602 2131820 421664 131.5 144753 2083745 6589827 318115 1668931 4489472 113309
25 14800000 263714 1838390 132.147 291841 3046739 10047391 797299 2003557 7140579 105056

26 18709786 3799538 2290618 128.651 449473 4261060 10433200 710683 2397836 7191086 133595
27 20874172 5138701 3680090 125.833 544732 4425862 12221711 768227 3143726 8110500 199258
28 25424948 8029089 6941383 118.566 701675 6721075 15357293 1386730 3803073 9913651 247839
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The data in Table 2 were sujected to multicollinearity test using Variance Inflation Factor (VIF),
eigen-value, tolerance (T) and condition number (CN) and the result is presented in Table 3

Table 3: Test for multicollinearity results

Independent Variable(xi) VIF Eigenvalues (λ) Tolerance(T ) Condition Number
x1 5.9983 8.9344 0.1667 1.00
x2 120.5980 0.4087 0.008 21.86

x3 6.5232 0.3329 0.1533 26.83
x4 18.1551 0.1937 0.0551 46.11
x5 155.7352 0.0785 0.0064 113.75
x6 84.1103 0.0191 0.0119 466.88

x7 49.4148 0.0175 0.0202 510.49
x8 282.6033 0.0093 0.0035 957.74
x9 131.6438 0.0036 0.0076 2496.18
X10 168.8738 0.0019 0.0059 4505.02

Table 3, detected the presence of multicollinearity in the data. This is because most of the
independent variables have V IF > 10, the eigenvalues close to zero (0), T < 0.1 and CN> 5. From
Table 2, influential measure criteria were obtained.

Table 4: Measure criteria

Influential measures calculated measure criteria
Cook’s Distance 2.3479

DFFITs 1.1547
Hadi’s Measure 6.2463

DFBETAS ±0.3651
COVRATIO > 0

Using R - Programme,to analyse the observation in Table 2, the influential data points were
indentified and presenteed in Table 5.

Table 5: Influential data points

Influential measures Influential data points
Cook’s distance 21, 22, 24, 25, 26, 27, 28, 29, 30

DFFITs 25
Hadi measure 14, 21, 22, 24, 26, 28, 29, 30

DFBETAs 14, 20, 21, 22, 24, 26, 27, 28, 29, 30
COVRATIO 14, 21, 22, 27, 28, 29, 30

5. Discussion of results

GDP and other economic variables in Nigeria were analysed using different influential measures with
a view to identify influential data poits when multicollinearity is present in a data set. The Cook’s
Distance identified thye data points 21, 22, 24, 25, 26, 27, 28, 29, 30, DFFITs identified only one data
point 25, Hadi Maesure identified points 14, 21, 22, 24, 26, 28, 29, 30, DFBETAs identified data points
14, 20, 21, 22, 24, 26, 27, 28, 29, 30 while COVRATIO identified data points 14, 21, 22, 27, 28, 29, 30. An
observation whose calculated influence measure is greater than its measure criteria is identified as
being influential. Deletion of any of these identified influential data points from the fitting process
will have a large effect on the parameter estimate.

6. Conclusion

This paper discussed the identification of influential observations in a data set. This was achieved
using some influential measures with out controlling multicollinearity. This approach is different
from that of Belsley et al (1989) where in multicollinearity was controlled before detecting influential
observations. Data points 21, 22, 27, 28 and 29 were detected by all the measures used except in
DFFITs that identified only one observation. These points flagged as influential should be examined
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carefully to determine whether they should be deleted from the analysis. Further, one can decide to
control multicollinearity on the used and goes ahead to re-identify influential observation to check
whether the same data point will be identified.
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Appendix

R codes for identifying influential observations

SSR = sum(r2)
h = matrix(hatr(V I ., d))[[1]], 28, 10)
ss = (sqrt(h[i, i]/(1− h[i, i])))
C = NULL
DF9 = NULL
H = NULL
DFB = NULL
COV = NULL
for i(in 1 : 28)
b1= cofficients(lm(V I ., d[−i, ]))
r1=c(residuals(lm(V I ., d[−i, ])))
sig1 = (sum(r12))/(n− p)
num = c[3]− b1[3]
hh = solve(t(XX)[−i, ]) ∗ (XX[−i.]))
denom = sqrt(sig1 ∗ hh[3, 3])
C = rbind(C,(((r[i]2/((sig) ∗ (1− h[i, i]))))/(1, 1)) ∗ (h[i, i]/(1− h[i, i])))
DF9 = rbind(DF9, r[i]/(sqrt(sig1 ∗ (1− h[i, i]))) ∗ sqrt(h[i, i]/(1− h[i, i])))
H = rbind(H,(h[i,i]/(1-h[i,i]))+(11/(1-h[i,i]))*(r1[i]/sqrt(SSR)))
DFB = rbind(DFB,num/denom)
COV = rbind(COV,(sig1/sig)*(h[i,i]/(1-h[i,i])))

res1 = cbind(C,DF,H,DFB,COV)
res2 = cbind(C2,DF2,H2,DFB2,COV2)
res3 = cbind(C3,DF3,H3,DFB3,COV3)
res4 = cbind(C4,DF4,H4,DFB4,COV4)
res5 = cbind(C5,DF5,H5,DFB5,COV5)
res6 = cbind(C6,DF6,H6,DFB6,COV6)
res7 = cbind(C7,DF7,H7,DFB7,COV7)
res8 = cbind(C8,DF8,H8,DFB8,COV8)
res9 = cbind(C9,DF9,H9,DFB9,COV9)


