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Abstract. In this paper, we employ two and three parameter distributions to model the
under-dispersed zero truncated data presented in a recent article. We illustrate with a
large frequency data having many categories that, the zero-truncated negative binomial
and its mixture distributions always fail to converge and consequently producing esti-
mated probabilities that sum more than 1 within the range of the data. The two-parameter
zero-truncated versions of the following distributions are considered here: the general-
ized Poisson (ZTGP), the new logarithmic distribution (ZTNLD), the new geometric
discrete Pareto distribution (ZTNGDP), the generalized Poisson-Lindley (ZTGPLD), the
zero-truncated Poisson-Exponential-Gamma (ZTPEGD) and the Quasi-Negative Bino-
mial (ZTQNBD?2). The three-parameter distributions similarly considered include the
zero-truncated Quasi-negative binomial (ZTQNBD), the zero-truncated Inverse Trinomial
(ZTIT), the zero-truncated Delaporte (ZTDLPD), the zero-truncated Negative binomial-
Erlang distribution (ZTNB-ELD), the New three parameter Poisson-Lindley distribu-
tion (ZTNTPLD) and the New three-parameter size-biased Poisson- Lindley distribution
(NTPSBPLD) zero-truncated versions. Three frequency data sets were employed and we
further extend our analyses to zero-truncated count data having co-variates (GLM) by
utilizing the Nigerian Health Insurance Survey (NHIS) data. Among the models, the ZT-
PEGD and the ZTDLPD perform better than all the other models for the example data
sets employed in this study. The Delaporte is particularly attractive and easier to program
in R since there is a Delaporte package in R that can be appropriately used. All models in
this study were implemented with SAS NLMIXED and corresponding written R codes.
Two of the R codes are presented in Appendices I and I1.
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1. Introduction

Umar et al. (2019) fitted a series of models to three frequency data sets that all
exhibit underdispersion, where the dispersion index DI = s2/5 < 1 for each
data set. Of concern is the use of negative binomial mixture distributions, such
as the three-parameter zero-truncated negative binomial-Erlang (ZTNB-ELD),
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the four parameter zero-truncated negative binomial beta exponential (ZTNB-
BED) distribution as well as the zero-truncated Negative binomial (ZTNB).
The other employed distributions are all one-parameter type including the zero-
truncated Poisson (ZTPD) distribution. These negative binomial mixture dis-
tributions were shown to fit the data sets better than the other models, most
especially for the metaphitamine data set in Table 2 and the accident data in
Table 3 of Umar et al. (2019) based on goodness-of-fit statistics -2LL and AIC.
It is well known that for under-dispersed data, the negative binomial or its mix-
ture distributions have convergence problems for any fitting algorithm. Thus
attempt to fit the ZTNBD or ZTNB-BED will lead to convergence problems,
manifesting into estimated probabilities sometimes greater than 1. The results
of these models as presented in Table 2 of Umar et al. (2019) buttress this prob-
lem with sums of expected frequencies being greater than the sample size of
(n = 3345.0). Table 2 data set is far more intractable than data sets in Tables 1
and 3 in Umar et al. (2019) because they have smaller observed sample sizes.
In actuality, for all discrete distributions, the sum of estimated probabilities are
always less than 1 (Lawal, 2018)-the exception sometimes being the Poisson.
Therefore the sum of expected frequencies of 2245.3 and 3345.1 in ZTNBD
and ZTNB-ELD respectively in Umar et al. (2019) should have been a warning
sign.

In this paper, we shall consider only two or more parameter zero-truncated dis-
tributions as it has been established that none of the one-parameter ZT distri-
butions fit the data. Among the two-parameter distributions that we will con-
sider are the generalized Poisson (ZTGP), the zero-truncated new Geomet-
ric Discrete Pareto Distribution (ZTNGDP), the zero-truncated Poisson Ex-
ponential Gamma distribution (ZTPEGD); the zero-truncated two-parameter
quasi-negative binomial distribution designated here as (ZTQNBD,); the zero-
truncated generalized Poisson-Lindley (ZTGPLD) and the zero-truncated new
logarithmic distribution (ZTNLD).

Also considered in this paper are the three parameter zero-truncated distribu-
tions Quasi-negative binomial (ZTQNBD), the zero-truncated Inverse-trinomial
(ZIT), the zero- truncated Delaporte (ZTDLD); the zero-truncated new three-
parameter Poisson-Lindley distribution (NTPLD); the zero-truncated new three-
parameter size-biased Poisson Lindley distribution (NTPSBPLD); the zero-
truncated negative binomial-Erlang (ZTNB-ELD) distribution as well as the
four parameter zero-truncated extended Com Poisson (ZTECOM) distribution.
These distributions are briefly described in the next sections.

Most of these distributions belong to the ABM class (Awad et al., 2016), named
after the authors, whose variance functions are of the form:

T
wm:u(ug) Cps0r=12.. )

Belonging to this class is the Poisson (r = 0), the Negative binomial-NB
(r = 1) and the generalized Poisson- GP (r = 2). The variance of the NB is

02 = (1 + ku) > p, the NB therefore is mostly appropriate for over-dispersed
count data. An attempt to implement even the ZTNB in R package glmmTMB()
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for the emphipetamine data will return a zero for the NB dispersion parameter .
Attempt to implement ZTNB-ELD for instance in R using optim optimizer re-
turns convergence issues-simply because the data in Umar’s Table 2 is strongly
under-dispersed.

2. Materials and Methods

2.1 Zero-Truncated Discrete Distributions

For a response variable Y with a probability density function f(y|@), where 0 is
a vector of its parameters. a zero-truncated model at y = 0 has the distribution

fyi,0) — f(y:,0)
Pr(Y; >0) 1—Pr(Y; =0)

f(y270) yi:1727"'7 (2)

where Pr(Y; = 0) is designated here as f(0).

We present in the following sections, brief descriptions of the zero-truncated
two and three-parameter discrete distributions employed in this study.
Employing (2), it is not too difficult to show that the zero-truncated Negative
Binomial has the pmf displayed in (3).

L(r+y)p?(1 —p)"
y!ID(r)[(1 = f(0)]

f?’zt(ylr7p) = Yy = 1727"' (3)

with f(0) = (1 —p)

2.1.1 The Zero-Truncated Generalized Poisson Distribution-ZTGP:

The type I generalized Poisson distribution (Consul and Famoye, 1992) has the
following pmtf:

Yi 1
i 1 i) i(1 i

L+ o yi! (1 + api)

with mean E(Y;) = p; and Var(Y;) = p;(1 + au;)?. Again, employing (2), its
corresponding zero-truncated pmf is:

w7 (4 ay)vi! exp (14 o)
L+ ap; yi! (1 + ap)

fzt(yi;:uva) = )
1 —exp {— o ]
(1 + api)

yi=12... (5

2.1.2 The Generalized Poisson-Lindley

The Poisson generalized Lindley (PGL) proposed in Atikankul (2023) is a mix-
ture of Poisson and generalized Lindley (GL) distributions and has the pmtf:
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0°T(a+y—1)[a@+2)—0+y—2]

_ =0,1,... 6
: 640 + 2)
with o > 1 and 6 > 0. f(O) = m
Hence, the zero-truncated pmf becomes:
OTla+y—1)a(@+2)—0+y—2
fa(y, a,0) = oty - Died+2) v—2, y=12,... ()

C(a)D(y + 1)(0 + 1)etyH[(1 — £(0)]’ y 45

2.1.3 The New Geometric Discrete Pareto Distribution-NGDP
The NGDP proposed in Bhati and Bakouch (2019) has the pmtf:
¢ q(y+1)

= — =0,1,2,..., O <1l,a>0. (8
f(y‘Q7Oé) (y+1)a (y_'_Q)aa Y ) S ) <q , O Z ()

Its mean and variance can be computed from expressions in (9a) and (9b) re-
spectively,

y = q®(q, @, 2) (9a)
op =2¢P(q, o0 — 1,2) — q®(q, @, 2)[3 + ¢®(g, @, 2)](9b)

k
where (2, s,a) = Z @ j_ A Its zero-truncated has the pmf:
k=0
_ (2 N —1,2 0 1, a>0. (10
fzt(y|Qaa/)_<(y+1)a_(y+2)a)/[ _f( )]’ y=1L1442 ..., <g<l,a=0l ( )
where f(0) =1 — 2%

2.1.4 The New logarithmic Distribution-ZTNLD

GoOmez-Déniz, Sarabia and Calderin-Ojeda (2011) proposed the new logarith-
mic distribution (NLD) whose pmf has the form:

log(1 — af¥) — log(1 — ad¥*t)

Tog(1 — ) o y=0,1,...,0<f<1; a<l(a#0) (11)

fyla,0) =

Its mean and variance can be computed from expressions in (12a) and (12b)
respectively,
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o0

1

My = m yz:; lOg(l — a@y) (123)
1 oo

Consequently, its zero-truncated pmf is of the form:

log(1 — a#¥) —log(1 — ah¥™1)
log(1 — af)

fzt(y|0479> — < ) ; Y = 1727 ceey (13)

with0 <0 < 1; a < 1(a#0)

2.1.5 The Two-Parameter Quasi Negative Binomial: QNBD,

Shoukri and Aleid (2022) proposed the two-parameter quasi-negative binomial
distribution, whose pmf is given in (14)

p—1 L(6 + By)0Y(1 — ) +Py—y—1 o1
B-D+8y yTB+By—y Y7700 .(.14)
with 0 < 8 < 1 and 0 < 65 < 1. Shoukri and Aleid (2022) give the properties

of this distribution and its moments. Thus, the zero-truncated version of this
distribution has the pmf:

f(y;0,8) =

B—1 (8 + By)¥(1 — §)7+hv—v-1
(B—=1)+By yT(B+ By —y)[l — (1 —0)5~1)

We will designate this distribution as ZTQNBD, with f(0) = (1 — )71,

fzt(y7975) -

2.1.6 The Zero-Truncated Poisson-Exponential Gamma
Distribution-ZTPEGD

The zero-truncated Poisson-Exponential Gamma distribution Umar (2019) has
the pmf:

02(0 + 1)y + 0%(0 + D) (a + y)
L)@+ )[04+ 1)> — 0+ 6(0 + 1)} (0 + 1)vy!’

y=12 ...
(16)

fztpegd(y; 97 O‘) = {

with «, 0 > 0.
http://www.bjs-uniben.org/
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2.1.7 Log-likelihood functions for two-parameter Distributions

For a single observation ¢, the log-likelihood for the zero-truncated
two-parameter distributions, ZTNB, ZTGP, ZTPLD, ZTNGBD, ZTNLD,
ZTQNBD,, and ZTPEGD are presented respectively in LLL1 to LL7 in (17).

LL1 = log[(r + y:)] + y; log(p) + 7log(1 — p) — log y;! — log[l'(r)] — log[l — (1 —p)"] (17a)

i(1+ ay;
LL2 = y; log( r + (yi — 1) log(1 + ay;) — pi(l ¥ oys)

i M
e -1 i) — 1 1- 17b
1+ a#i) 1+ ap; og(yst) —log { P [ } }( 4

(14 o pq)

(17¢)

LL3 = log [9 Tlaty —D[a0+2)—0+w —2]}

()T (ys + 1)(0 + 1)> Tt (1 — £(0)]
q’y q(yi+1)

LL4 = log A
8 | (yi + 1) (ys +2)

} — log(q) + alog(2) (17d)

LL5 = log

log(1 — a8}) — log(1 — a@yi+l):| (17e)

log(1 — af)

L6 — log | A1 T(8 + By:)0¥ (1 — )P FFvi—vi—?
T (B D) + By WT(B+ By — i)l — (1— )P 1]

171

02(0 + 1)y + 0% (0 + 1)T i
LL7 = log (6 +1)%yr! +6° (6 + DI(or + 3:) ]

| TT(@)(@+ VIO + Do — 0]+ 606 + D3(6 + D¥iys! (e

2.2 Zero-truncated three parameter discrete distributions

We also consider some three-parameter distributions that have received con-
siderable attention for implementing zero-truncated data in the literature. This
includes the quasi-negative binomial (Lawal, 2019), Liet al., 2011), The Inverse
trinomial (Lawal, 2019), The Delaporte distribution, the Negative binomial-
Erlang distribution (ZTNB-ED) Umar et al., 2019), the New three-parameter
Poisson-Lindley distribution (NTPLD) proposed in Das et al. (2018), and the
New three-parameter size-biased Poisson-Lindley distribution (NTPSBPLD)
proposed in Shanker and Shukla (2020). We briefly present the zero-truncated
pmfs of these distributions in the following sections.

2.2.1 The Quasi-Negative Binomial-QNBD

The quasi-negative binomial distribution recently employed in Li et al. (2011)
has the pmf (Hassan and Bilal, 2008) given by:

Mly+a)( 1 1+cy \’ b ° s
PY =y) =1 yT(a) \T+ey) \I+b+cy) \T+b+rey) 7777
0

fory >mife <0
(18)
where a > 0, b > 0 and m = [—1/c| with m being the largest positive integer
for which 1+mc = 0. The QNBD in (18) reduces to the negative binomial (NB)
distribution when the parameter ¢ = 0.
An equivalent form of the QNBD model is proposed in Janardan (1975); Hassan
and Bilal (2008) and has the pmf of the form:
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aty—1\ 01(6) + Ooy)V~!
PlY =y) = : =0,1,..., 19
=y < y >(1+01+92y)‘“+y ! (>
) ) 0 1
The two models are equivalent with ¢ = 0 b= 9 ,and a = a. The mean and
1 1

variance of the QNBD can only be obtained via a series of recurrence relations.
Thus the moments do not have closed form expressions and are consequently
almost intractably difficult to compute. We propose a method for computing
these later in this paper. Its zero truncated pmf is:

B [y + ) 1 1+cy \’ b “ B
th(a’b’c)_y!F(a)[l—f(O)} <1—|—cy) (1+b+cy> (1+b+cy> y=12... 20

where f(0) = (%er)a

2.2.2 The Inverse-Trinomial Distribution-1T

The inverse trinomial distribution Shimizu and Yanagimoto (1991) which is
derived from the Lagrangian expression has the probability mass function of
the form :

y/2| t
gy (y+ N)! pr
PY = | = 21
( y+)\zt't+>\ (y — 2t)! <q2 @D
y=0,1,...;A>0,p>rand p+qg—+r = 1. Itis so named because its cumulant

generating function is the inverse of that for the trinomial distribution. The IT
model was employed for over-dispersed medical count data by Phang and Ong
(2014). It is a member of the Takac family distribution with a cubic variance
function of the mean.

For the zero-truncated ITD, with parameter Pr(Y > 0) = 1 — Pr(Y = 0) =

1 — p*. Hence, the pmf of zero-truncated ITD random variable Y; becomes

ly/2]

W (y+ ! pr\'
faly) = (y+A) (1 —p) ; tt+ Ay —2t)! (?) (22)

fory = 1,2,.... Its means and variances will be computationally obtained.

2.2.3 The Delaporte Distribution-ZTDLPD

The discrete Delaporte probability distribution with parameters «, 3, and A is
a convolution of the negative binomial distribution with a Poisson distribution
and has the pmf,
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Y 1 z—)\

(o +7) BN~

2

J(yler, 8 E:NF Y1+ B)oti(y —q)! 23)
1=

= 0,1,2,... and o, 8, A > 0. The distribution has also been described as
a compound Poisson distribution with two components. The first component
being a fixed A\ parameter and second component which has gamma-distribution
with parameters « and 3. The distribution is named after Pierre Delaporte and
1s designated here as the DLPD. Its zero-truncated pmf using (2) is displayed in

(24).
fzt - (

where f(0) =

Yy i —A

a+25AyZ

E =1,2,... 24

) Z'F +/8 (1+Z( )'7 y ) Y ( )
1=

6—)\

(14 8)>

2.2.4 The New 3-parameter Poisson-Lindley: NTPPLD

The New three-parameter Poisson-Lindley distribution (NTPLD) proposed in
Das et al. (2018) has the pmf:

62 a+ By _
fly; . 8,0) = m-<1+9&+6),y—0,1,2,--- (25)
0%(0a + o + B)

with 6,3 > 0 and o + 8 > 0. f(0) =

truncated pmf is given in (26).

Hence, its zero-

0+ 1)2(0a+5)

62 o+ a+ By + B B
Fatvess 0 = e (o o) 0= b @9

if =60 1n (26), we have:

. B 62 o+ a+0y+0 B
fzt(y7a70) - (9+1)y+2 ((0&+9)[1 _fa(o)]) ) y_ 1727"' (27)

0%(0a + o + )
0+ D2(0a +0)
http://www.bjs-uniben.org/
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2.2.5 The New 3-parameter sized-biased Poisson-Lindley: NTPSBPLD

The New three-parameter size-biased Poisson- Lindley distribution (NTPSB-
PLD) proposed in Shanker and Shukla (2020) has the zero-truncated pmf:

03 0
f(y; 0,0, 8) = Qa”ﬂy(ﬂy(;fl;f‘;ﬁ), y=1,2,... (28)

with a;, 8 > 0. Its mean and variance are respectively,

_at*+2(a+B)0+68
B 0(0a + 2P)

o 2[a’0 + (a® +5a8)0% + (662 + 6a3)0 + 657
7 62(0a + 25)? (290)

(29a)

The two-parameter variants of the model in (28) are the SBQPLD (Size-based
quasi Poisson-Lindley distribution when 5 = #) and SBNQPLD (Size-based
new quasi Poisson-Lindley distribution when o = 6). Both were suggested by
Shanker and Mishra (2013, 2017) respectively.

2.2.6  The Zero-truncated Negative Binomial-Erlang Distribution:
ZTNB-ELD

The Zero-truncated negative Binomial-Erlang distribution has the pmf (Bod-
hisuwan et al., 2017),

Y k
y+r—1 Y\ 1\ ¢
(2 () v ()
th(y;/ra ¢, k) = = ) Y= 1727 s (30)

()
c+r

with r, ¢, k > 0.

2.2.7 The Negative binomial COM-Poisson Distribution: NBCOM

The Negative binomial Com-Poisson is provided in Zhang et al. (2018) and has
parameters (7, v, p) with the pmf given by

_ [+, e L
f(y,T,V,p) - [ y'F(T) ] py(]' p) .C(T,l/,p)7 y_oa17 (31)
where r,v € (0,00) and p € (0, 1) with
_ EOO' F(T’+]) v r

http://www.bjs-uniben.org/




On Zero Truncated... 22

being the normalizing constant. f(0)
its zero-truncated pmf becomes,

(1 — p)"C~. Consequently, using (2),

y=1,2,... (33)

fa(y;rv,p) = [F(T—’_y)] i p!(1—p)

NG rvp) — (L—p)]

2.2.8 Log-likelihood functions for three-Parameter Distributions

The log likelihood of a single observation ¢ from ZTQNBD, ZTIT,
ZTNBCOM, NTPSBPLD, NTPPLD, ZTNB-ELD, and ZTDLPD are given
in expressions (34a) to (34g) respectively:

—_ ) _ ) 1 ) 1+ cy; L B B
Bt = log i+ = los(yit) —logl(e)] 4 1og (1 + cy) uilos (1 Yo cu) Halos (1 Yo w) log[1 = J(0))G4)
lyi/2] (yi + \)! r\!
LL2 = log(X) + Alog(p) + i log(q) — log(y: + A) + log ; Ty it r 8 (qu) —log[1 — £(0)] Gab)
LL3 = y; log(p) + rlog(1 — p) + vlog D(yi + r) — vlog(y;!) — vlog [(r) — log O(r, v, p) — log[L — f(0)] (34¢)
LL4 = 3log(0) — log(0a + 28) + log(y:) + log(By: + Oa + a + B) — (yi + 2) log(6 + 1) (34d)
LL5 = 2log() — (yi + 2)log(f + 1) + log(fa + a + By + B) — log(fax + B) — log[L — £(0)] (340)
LL6 = log((* 77T 1)) +log i (") =1y’ ( < )k — log[1 — £(0)] 345
Yi izo J c+r+j
LL7 = log i Lla+DF A" | i fo)) (34g)
m 5 il (o) (1 + B)Ti(y; — i)! & g

2.2.9 Estimation

Maximum-likelihood estimation of all log-likelihoods in (17) and (34) is carried
out with PROC NLMIXED in SAS, which minimizes the function —LL(y, ©)
over the parameter space © numerically. The integral approximations in PROC
NLMIXED is the Adaptive Gaussian Quadrature Pinheiro and Bates (20??) and
our choice optimization algorithm here is the Newton-Raphson techniques.

3. Results and Discussion

The above two-parameter and three-parameter truncated models are applied to
three frequency distributed example data sets presented below.

3.1 Two-Parameter Applications

Firstly, we apply the two-parameter zero-truncated models to these three data
examples and compare our results with the three-parameter ZT models.

3.1.1 Example I-Distribution of Stillbirths

The data in this example presented in Table 1 is the frequency distribution of
mothers with at least one stillbirth in the urban areas of Nigeria (NDHS, 2013).
The data is also recently analyzed in Umar et al. (2019). It has an observed
mean and variance 1.44453 and 0.5975 respectively. Consequently, the disper-
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sion index is DI = 0.4134 < 1 indicating a strong under-dispersion. The data
has a sample size of n = 658.

Table 1: Distribution of stillbirths in Urban areas of Nigeria

m%

2 130 1461122 1467236 1459022 1458231 1264600 1444108 1450581
3 49 438356  43.6470  43.8047 444271 406566 432590  43.449]
4 12 126100 12,5057 126434 127086 143766  12.8039  12.7244
5 5 35407 35241 35619 (43.64;%637) 54003 3.7757 37014
Total 658  656.6601 6566322  656.6427  656.8084 6544161 6564244 656.4%67
Yo 20 17 17 16 25 18 25
MLE p=02514 [=05577 (=0.2545 a=34118 [=29.6127 G=0.9507 GA=-0.8619
F=15794 7202579 a=-0.5260 6=42920 §=0.0078 #=23876  6=0.2901

14453

o2 05975
i 14453 1.4453 14453 1.4452 14452 1.4453 1.4455
5 06087  0.6082 06070  0.6033 07536  0.6228 0.6188
X2 10012 1.1030 09882  0.8726 55666  1.0397 1.0169
af 2 2 2 2 2 2 2
p-value 06062  0.5761 06101  0.6464% 00618  0.5946 0.6014
X2 644.8668 6453370 6435376  650.6427 5209050 6302672  634.3413
af 655 655 655 655 655 655 655
)98 T741 11742 1T74.1 1737 11808 11744 11743
AIC 11781 11782 1178.1 11777 11848 11784 11783
BIC 11871 11872 1187.1 1186.7 11937 11874 1187.3

(1) As observed in Lawal (2018) all the models (as typical of discrete distri-
butions) produce cumulative sum of expected values not summing to the
sample size n = 658. The estimated probabilities do not sum to 1.000 (and
consequently, the expected values summing to n = 658 until y, = 16 for
the ZTPEGD for example, which is outside the observed range 1 <Y <5
for the data. The mean and variance of this distribution can only be esti-
mated at this point. The values of y, at which the estimated probabilities
for each of these distributions sum to 1 are given by y,. In appendix I
(providing theR codes and outputs) for the ZTPEGD for example, the em-
pirical mean and variance at Y = 5 are 1.4337 and 0.5630 respectively.
Whereas the theoretical mean and variance of the ZTPEGD are 1.4452
and 0.6033 attained at Y=16 respectively when the estimated probabili-
ties actually sum to 1.000000 (using six digits). Note that the means and

variance remain constant at Y > 16
5

(2) For the ZTPEGD again as an example, Zmz = 656.8084 with actual
i=0
estimated expected value being ms = 3.4467. However, in computing the
grouped Pearson’s X2, we had used 3.4467 + (658-656.8084) = 4.6383.
This is similarly applied to all the models in the computations of X 92.

(3) In computing Pearson’s group X2, we have employed the Lawal’s (1980)

rule which allows expected values to be as small as rd~3/2, where r is
the number of expected values less than 3, and d is the corresponding d.f.
All the two-parameter models satisfy the criterion hence, we do not need
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to collapse any categories. The resulting Pearson’s X 92 are displayed with
the corresponding d.f. based on 5 — 2 — 1 = 2 d.f., since two parameters
are estimated from the model. Based on the grouped Pearson’s X2, model
ZTPEGD is the most parsimonious with a p-value of 0.6464 and is closely
followed by the ZTNGDP. ZTPEGD also has the lowest -2LL or AIC.
(4) We observe that the computed means y for all the models are all very
close to the observed mean of 1.4453. The closest estimated variance to
the observed variance 1s 0.6033, that of ZTPEGD. ZTNB, ZTGP and ZT-
NGDP also have estimated variances that are very close to the observed.
The other distributions over-estimated the observed variance in the data.

. )2
(5) The Wald’s goodness-of-fit test statistic X2, = Z W—ml}
o

5 are simi-

]

i=1
larly presented. The most parsimonious with this GOF is the ZTQNBD,.
This is not surprising as it gives the highest estimate of the observed vari-
ance and since X%V is a function of the reciprocal of the variance, we
expect it to lowest for all the models.

3.1.2  Example II: The Methamphetamine Data

The frequency data set in Table 2 gives the number of Methamphetamine from
the Office of the Narcotics Control Board (ONCB), Thailand in a Bangkok
metropolitan region (Bodhisuwan et al., 2017). The data were presented in
Umar et al. (2019). The observed mean and variance for this data are ;4 = 1.1250
and o2 = 0.4054. Consequently, the dispersion index DI = 0.36 < 1. Hence,
this data is strongly under-dispersed.

Table 2: Observed and Expected frequencies for the Methamphetamine data for
the Models

Wmmg

. . 2187 76.617 . . .
2 163 3109127  297.7201  235.8907  327.9534  308.2312  314.0136  103.9429
3 23 43.1453 44.2705 37.0064 36.0160 42.2477 37.4655 49.0458
4 20 6.7323 7.7955 8.6217 3.9343 6.5594 4.6617 27.8294
5 9 1.1203 1.5076 2.5895 0.4272 1.0938 0.5907 17.0923
6 3 0.1941 0.3095 0.9288 0.0461 0.1911 0.0755 10.9498
7 3 0.0346 0.0662 0.3800 0.0049 0.0345 0.0097 7.1909
8 3 0.0063 0.0146 0.1720 0.0005 0.0064 0.0013 4.7959
190 431 0.0012 0.0033 0.0844 0.0001 0.0012 0.0002 3.2305

0.0002 0.0008 0.0442 0.0000 0.0002 0.0000 2.1904

Total 3045 33449999 33449998 3344.9364 33449999 33449999 3344.9999 3340.2679
Ya 14 12 82 11 13 11 55

$=0.0030%  1=0.0012 G=6.0671 (=2.2993  0=0.1701 G=1.2065 G=1.4549
7=0.20778%  7=100.06 §=1.0000* 0=9.2679  B=1.0771 6=6.7811  §=0.6873
po 11250
o2 0.4054
y 1.1265  1.1249  1.1065  1.1237 11250 11213 1.1760
5 0.1540  0.1579  0.1581 __ 0.1388 01519 0.1400 __ 0.7796
X7 88037247 8588.3845 8581.9372 9764.5230 8927.9409 9682.7013 1750.2414
df. 3342 3342 3342 3342 3342 3342 3342
2LL 25054 24578 23103 26292 25021 2576.6  2268.1
AIC 25094 24618 23143 20332 2506.1 25806 22721
BIC 25216 24740 23265 26454 25183 2592.8  2284.3
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(1) Again all the models have sum of expected values less than n = 3345
within the observed range 1 < Y < 10 of the observed data. The esti-
mated probabilities only sum to 1 at Y = y, which is outside the ob-
served range of the data. These y, are displayed for each model.. For
the ZTNBD, because the data is strongly under-dispersed, the ZTNB
model fails to converge for various combinations of r and p. Thus, SAS
PROC NLMIXED gives a warning that the variance-covariane was com-
puted using the Moore-Penrose approach. The consequent of this, is that
vzv:e may have sum of estimated probabilities being greater than 1 before

m; = n.

(2) None of the models fits the data. While QNBD,, ZTGP, and ZTPEGD
give estimated means that are either equal or slightly less than the ob-
served p = 1.1250. All the models underestimated the true variance of
the data which is 0.4054 (the exception being the ZTNLD which overes-
timates the variance). This under estimation of the observed variance in
the data accounts for the lack of fit of all these models.

(3) Based on the -2LL and AIC, the most parsimonious model would be
ZTNLD but produces estimated moments that grossly over-estimated the
observed moments.

3.2 Three Parameter Zero-Truncated Models’ Applications

We present the results of applying some of the three-parameter zero truncated
models to the following data:

3.2.1 Example Ill: Household migrant Data

The data in this example in Table 3 gives the distribution of the number of
households having at least one migrant (Y), according to the number of ob-
served migrants as reported in Singh and Yadav (1971) and analyzed in Shanker
and Shukla (2020).

Results of the application of zero-truncated three-parameter models to the
household migrant data in Table 3 indicate that all provide estimated means
that are very or exactly close to the observed mean of 1.5475. However, of the
models, the zero-truncated Delaporte provides the most parsimonious model. In
general we observe the following:

e The probabilities of each distributions do not sum to 1.000 until y, dis-
played in the table, which is outside the range 1 <Y < 8.

e Based on -2LL and AIC, the ZTDLPD is the most parsimonious.

e However, based on Pearson’s grouped GOF, the most parsimonious model
would be the zero-truncated quasi-negative binomial with X 3 = 2.6519
on 4 d.f. (pvalue=0.6177)

e Based on Wald’s GOF, the most parsimonious is the ZTDLPD because
it has a larger estimated variance s> = (0.8128, which happens to be the
closest to the observed variance of 0.8186 in the data.

e All the three models ZTQNBD, ZTIT and ZTDLPD outperform the oth-
ers and would each be suitable for this data set. They outperform the
ZTNB-ELD.
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Table 3: Zero-truncated Three-parameters Applied to the Household Migrant

Data
Y count ONBD DILPD NBCOM NTPSBPLD NTPLD NB- D
7 76.099 75.434 73.4299 76.330 63.66 76.337 76.1869
2 143 141.6323 143.3341 146.9495 140.4413 156.3045 140.2411 141.3854
3 49 48.1418 46.7632 46.6549 48.8596 50.3856 49.0492 48.2401
4 17 15.9564 16.1342 14.6733 16.4069 14.4374 16.4780 16.0364
5 2 5.3287 5.4609 5.0534 5.3930 3.8783 5.3837 5.3487
6 2 1.8207 1.8789 1.9116 1.7476 1.0002 1.7234 1.8144
7 1 0.6411 0.6477 0.7682 0.5605 0.2508 0.5431 0.6300
8 1 0.2334 0.2251 0.3195 0.1784 0.0616 0.1691 0.2246
ota . . . . . . .

Ya 27 21 25 19 17 18 18
q=5.41 12 p=0.8728 Qz=().2627 v=5.7330 Ozf12.7568 Qz=261.4() r=4.5305
b=8.4846 f=0.0224 @=0.8944 p=0.3016 . 0=3.6532 BA=901 91 6532.1 112
c=0.1169 \=2.7219 \=0.5798 r=1.0757 [3=-0.0002 0=2.5680 k=4.4964

u 1.5475

o2 0.8186
%7 1.5474 1.5475 1.5475 1.5475 1.5475 1.5475 1.5474
s 0.8094 0.8075 0.8128 0.7993 0.6973 0.7972 0.8085
X; 2.6519 2.7902 2.8661 4.6854 8.2326 4.1152 3.5761
d.f 4 4 4 3 2 3 4
pvalue 0.6177 0.5935 0.5805 0.1963 0.0163 0.2493 0.4664
X2 595.7063 597.1184 593.2251 603.2790 691.4707 604.8212 596.3681
d% 587 587 587 587 587 587 587
2LL 1185.4 1185.6 1185.2 1185.9 1189.6 1186.0 1185.5
AIC 11914 1191.6 1191.2 1191.9 1195.6 1192.0 1191.5
BIC 1204.5 1204.7 1204.3 1205.0 1208.7 1205.1 1204.5

3.2.2 Example IV: The Methamphetamine Data

In this section, we apply the three parameter zero-truncated models to the
Methamphetamine data previously presented in Table 2. The results of imple-
menting some of these models are presented in Table 4.

The zero-truncated Delarporte distribution (ZTDLPD) is the most parsimonious
amongst the distributions considered here. It has a grouped X? of 8.2587 on 6
d.f. (p-value=0.2198). A good fit. Unfortunately, because of the strong under-
dispersion of this data set, all the other three parameter zero-truncated distribu-
tions considered in Table 3 fail to converge. This is not unusual especially, for
negative binomial mixture models. We present in Appendix II the R codes and
output in the implementation of ZTDLPD to this data set. Similar to the data in
Table 1, the sum of estimated probabilities in the observed range 1 <Y < 10
18 3342.4870 < n = 3345. The 7; do not sum to 1.0000 until Y=62. AtY = 62
the estimated theoretical mean and variance are 1.1250 and 0.4435 respectively-
both of which are very close to the observed moments in the data. We observed
here that the estimated variances from the ZTNTPLD and NSBPLD models
grossly under estimated the observed variance in the data-hence, their inabil-
ity to fit the data.The ZTNB-ELD does not behave as indicated in Umar et al.
(2019). Like all mixed negative binomial models, it suffers from convergence
with under-dispersed count data. Thus, its parameters exist here for 1 <Y < 32.
For values of Y > 32, the sum of expected values will be greater than the sample
size n = 3345. This explains the sum of expected values being 3345.1 in Umar
et al. (2019) and it should not be. Under this condition therefore, its estimated
variance is less than the observed variance and it therefore does not fit the data
but performs better than the ZTNTPLD and NSBPLD.
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Table 4: Distribution of the number of Methamphetamine

Count ZTNTPLD NSBPLD ZTDLPD ZTNB-ELD

<

2 163 330.2936 348.5078  161.4043 325.2221

3 23 36.6895 30.7420 28.8169 72.5858

4 20 4.0755 2.4105 14.7027 22.7673

5 9 0.4527 0.1772 8.8126 8.8004

6 3 0.0503 0.0125 5.5375 3.9247

7 3 0.0056 0.0009 3.5848 1.9435

8 3 0.0006 0.0001 2.3711 1.0427

9 4 0.0001 0.0000 1.5940 0.5961

10 3 0.0000 0.0000 1.0854 0.3589

(3.5983) (1.0995)

ota . . .

Ya 11 10 62 32
&=414.00 &=0.3660 &=0.0038 7~ 0.000
£=0.0214 ($=0.0000001 /$=3.1196 ¢=4.3655
6=8.0024 0=16.0048 )=0.0721 k=0.3457

L 1.1250

o2 0.4054

7 1.1250 1.1250 1.1250 1.1880

52 0.1406 0.1328 0.4435 0.3765

X2 9644.2029 10,211.347  3057.052 3619.972

d.f. 3342 3342 3342 3342

2L 2624.8 27525 2207.8 23741
AIC 2630.8 2758.2 2213.8 2380.1
BIC 2649.2 2776.8 2232.1 2398.4
X2 > 158.0 > 676.0 8.2587 > 134.0
af 1 1 6 5
p-value 0.0000 0.0000 0.2198 0.0000

3.3 GLM Applications-The NHIS Data

Adesina et al.

(2021)

re-analyzed

the National

Health Insurance

Scheme (NHIS) data that is fully described in Mendeley Data website,
https:/data.mendeley/z7wznk53cf/8. The data, obtained from health facilities in
Ota, Ogun State, Nigeria has 1647 patients. The response variable of interest is
Y -the number of encounter visits to the doctors The predictors in the data set

arc:

sex- gender of patients (male=1, female=0)
age- age of patients
fup- (follow-up=1, no-follow-up=0)
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The first and last five observations of the data are presented below.

ID sex age fup ecs Y
1 1 27 1 0 1

2 0 38 1 0 3

3 0 55 1 0 1

4 0 41 1 0 1

5 0 34 1 0 4
1643 1 17 0 0 1
1644 1 51 0 0 2
1645 0 10 0 0 1
1646 0 10 0 0 1
1647 1 48 0 0 1

The variable Y has § = 3.3892; s> = 11.5987, thus giving a dispersion index
of 3.4223 > 1 thus indicating strong over-dispersion. Further, Y has the range
[1,27], thus it is truncated at Y = 0, with 98.54% of the data, that is, 1623
observations in the range [1,15], indicating extreme values in the range [16,27]
with just 1.46% of the data. In figure 1 is the frequency distribution of Y-the
number of encounter visits to the doctor. Clearly, the bulk of the data is between
I and 9.

|||||

ijuﬂmﬁgmmﬁmﬂﬁﬁﬂqﬁy_

12 13 14 15 16 17 18 19 o 21

Figure 1: Frequency Distribution of Y-the number of Visits

We present in Table 5, the results of applying some zero-truncated two and three
parameter models to the National Health Insurance Scheme (NHIS) data with
the linear predictor being

x' 3 = By + Bisex + Boage + [3fup + [aeclass

The ZTNB and ZTGP are modeled as u; = exp(x; B). Parameters ¢, 6 and r in
ZTNGDP, ZTNLD and ZTNB-ELD respectively are modeled in the logit form.

That is, for example, for the ZTNLD, 6; = 1/[1 + exp(—x;3)]. The parameter
A in ZTIT and ZTDLPD are in the exponential form )\; = exp(x;3), while

parameter b in the ZTQNBD is modeled as 1/ exp(z,83).

Results in Table 5 indicate that among the two-parameter models employed
here, the most parsimonious model is the zero-truncated generalized Poisson
with a p-value of 0.6878 and also gives the lowest AIC and BIC GOFs. The
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Table 5: Parameter estimates and GOF statistics for ZT models applied to the

NHIS Data
Effect ZTNB ZTGP __ ZINGDP ZINLD | ZTQNBD ZTIT _ ZIDLPD  ZINB-ELD
Tntercept 0.3267 0.6085 12276 1.0617 1.0451 0.0092 0.5616 15.8794
sex -0.0144 -0.0122 -0.0205 -0.0169 -0.0112 0.0270 0.0465 -15.4953
age 0.0043 0.0038 0.0050 0.0043 0.0040 0.0076 0.0045 1.0154
fup 0.1046 0.0945 0.1369 0.1135 0.0901 0.0607 0.0919 -5.0229
ecs 0.3323 0.3065 0.4325 0.3544 0.2919 0.2509 0.2405 9.7604
MLE 7=03952  7=0.5625  6=05527  &=08937 | &=05211  p=0.5694  &=04111 e=7.6485
£=0.0107  7=0.1438  B=4.5160 k=8.2352
2LL 6709.3 6705.8 6707.5 6709.6 6708.1 6707.1 6710.5 6713.5
AIC 6721.3 6717.8 6719.5 6721.6 6722.1 6721.1 6724.5 6727.5
X2 1699.83  1612.4480  1662.3487  1719.6386 | 1616.6445  1598.9972  1631.3057 1596.7487
df. 1641 1641 1641 1641 1640 1640 1640 1640
p-value 0.1523 0.6878 0.3510 0.0865 0.6547 0.7613 0.5558 0.7735

three-parameter models considered all fit the data very well with the zero-
truncated NB-Erlang distribution being the most parsimonious with a p-value of
0.7735 and 1s closely followed by the ZIIT. Over all, the three-parameter mod-
els provide a better fit to the data than the two-parameter models. The ZTPEGD
performs poorly here with AIC and BIC being 6724.2 and 6756.7 respectively
with a Wald’s GOF of 1710.0594 on 1641 d.f.

4. Conclusion

The negative binomial and its mixture models are unsuitable for modeling
under-dispersed count data because they usually have convergence problems.
However, we have demonstrated that alternative two and three parameter distri-
butions can be employed. Among the two-parameter distributions, the ZTPEGD
(zero truncated Poisson -Exponential Gamma distribution) seems to fair better
for frequency under-dispersed count data. However, the zero-truncated Dela-
porte (ZTDLPD) by far performs much better than all the others. In particular,
it fits the intractable metaphitamine data in Table 4. All the models are imple-
mented in SAS PROC NLMIXED and R using Optim as our optimizer. SAS
does not have a routine for the Delaporte distribution, so this was programmed.
The results from both SAS and R are very close, but SAS gives better results
because of its array of optimization algorithms.
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Appendix I: ZTPEGD R output for the Stillbirth data in Table 1

y <- c(rep(1,453), rep(2,139), rep(3,49), rep(4,12), rep(5,5)

ztpegd=function (gam,y) {
a=gam[1]
theta=gam[2]
ul=(theta+l) "a
z1=(theta"2) *ul*exp (lgamma (y+1))
z2=(theta”a) x (theta+l) xexp (lgamma (a+y) )
z3=exp (lgamma (a) ) » (theta+1l) x (ul-theta”a)+ (thetaxul)
LL=log (z1l+z2)-log(z3)-y*xlog(theta+l)-lgamma (y+1)
return (Re (-sum (LL)))

VV A4+ A+ttt VY

fit= optim(fn=ztpegd, c(a=2.5, theta=4), method="BFGS", y=y, hessian = TRUE)

> fit
Svalue
[1] 586.8564

$counts
function gradient
27 14

$convergence
[1] O

Smessage
NULL

Shessian

a theta
a 39.37807 -25.29966
theta -25.29966 16.58869

>
> ##Nelder-Mead
> f#fest=fit$estimate
> est=fit$par
>
> #Parameter Standard Errors
> covm <- solve (fit$hessian)
> sel=sqrt (diag(covm))
> Z.value=est/sel
> pvalue=2x (l-pnorm(abs (Z.value)))
> ra=round(cbind(est, sel,Z.value, pvalue),digits=4)
> ra
est sel Z.value pvalue
a 3.4113 1.1228 3.0381 0.0024
theta 4.2912 1.7300 2.4805 0.0131
>
> k=2
> AIC=2x (fit$value) +2*k
> n=length (y)
> BIC=2x* (fit$value) +kxlog(n)
> VIC=cbind (AIC,BIC)
> VIC

AIC BIC
1,] 1177.713 1186.691

##Generate estimated probabilities, mean and variance##
aa <- fit$par[1l]

theta <- fit$par[2]

DF=658

# Initialize result storage
results <- data.frame (

i = integer(),
prob = numeric ()
cum = numeric(),
fitl = numeric(),
ssl = numeric(),
mean = numeric(),
vl = numeric(),
var = numeric ()

)

# Initialize cumulative variables

ssl <= 0
cum <- 0
mean <- 0
vl <= 0

# Loop through s from 1 to 5

for (i in 1:20) {
ull=(theta+l) "aa
z11=(theta”2)+ull+exp (lgamma (i+1))
z22=(theta”aa) » (theta+l) xexp (lgamma (aa+i))

+++VVVVVVVVV+++++++++VVVVVVVV—
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z31=exp (lgamma (aa) ) * (theta+1l) x (ull-theta”aa)+ (thetaxull)
LLl=1log(z11+z22)-1log(z31l)-ixlog(theta+l)-lgamma (i+1)
prob=exp (LL1)

fitl <- DF % prob

ssl <- ssl+fitl

cum <- cum + prob

mean <- mean+ (prob x i)

vl <= vl + (1 » 1 = prob)

var <- vl - (mean x mean)

# Store results
results <- rbind(results, data.frame(

i =1,

prob = prob,
cum=cum,
fitl = fitl,
ssl = ssl,
mean = mean,
vl = vl,

var = var
))
}

VA ++ 4+ 4+ ++ 4+ A+

> # Print final results
> round(results, 4)

i prob cum fitl ssl mean vl var
1 0.6845 0.6845 450.4080 450.4080 0.6845 0.6845 0.2160
2 0.2216 0.9061 145.8189 596.2269 1.1277 1.5709 0.2992
3 0.0675 0.9736 44.4258 640.6527 1.3303 2.1786 0.4090
4 0.0193 0.9930 12.7086 653.3613 1.4075 2.4876 0.5065
5 0.0052 0.9982 3.4469 656.8082 1.4337 2.6186 0.5630 ==*
6 0.0014 0.9995 0.8954 657.7036 1.4419 2.6676 0.5885
7 0.0003 0.9999 0.2246 657.9282 1.4443 2.6843 0.5983
8 0.0001 1.0000 0.0548 657.9830 1.4449 2.6896 0.6018
9 0.0000 1.0000 0.0130 657.9961 1.4451 2.6912 0.6028
10 0.0000 1.0000 0.0030 657.9991 1.4452 2.6917 0.6032
11 0.0000 1.0000 0.0007 657.9998 1.4452 2.6918 0.6033
12 0.0000 1.0000 0.0002 658.0000 1.4452 2.6919 0.6033
13 0.0000 1.0000 0.0000 658.0000 1.4452 2.6919 0.6033
14 0.0000 1.0000 0.0000 658.0000 1.4452 2.6919 0.6033
15 0.0000 1.0000 0.0000 658.0000 1.4452 2.6919 0.6033
16 0.0000 1.0000 0.0000 658.0000 1.4452 2.6919 0.6033 xx*x*
17 0.0000 1.0000 0.0000 658.0000 1.4452 2.6919 0.6033
18 0.0000 1.0000 0.0000 658.0000 1.4452 2.6919 0.6033
19 0.0000 1.0000 0.0000 658.0000 1.4452 2.6919 0.6033
20 0.0000 1.0000 0.0000 658.0000 1.4452 2.6919 0.6033
##Compute mean and variance using the method of moments##
suma=0
sumb=0

for (k in 1:100){
u2l=(theta+l) "aa
z21=(theta”2) +u2l+exp (lgamma (k+1))
z23=(theta”aa) » (theta+1l) rexp (lgamma (aa+k))
z32=exp (lgamma (aa) ) » (theta+1l) » (ull-theta”aa)+ (thetaxu2l)
LL2=log (k) +log(z21+z23)-1log(z32) -kxlog(theta+l)-lgamma (k+1)
LL3=2 x log(k)+log(z21+z23)-1log(z32)-k*log(theta+l)-lgamma (k+1)
suma=sumatexp (LL2)
sumb=sumb+exp (LL3)

}

mu=suma

sig=sumb- (muxmu)

xx=((y—mu) x%2) /sig

yg=cbind (mu, sig)

head(yqg, 10)

mu sig

theta 1.445187 0.6033023

>

> X2=sum (((y-mu) "2)/siqg)

> X2

[1] 650.6363

>

VVVVV+++++++++VVVVYV

Appendix II: ZTDLPD R codes and output for the data in Table 4

y <- c(rep(1,3114), rep(2,163), rep(3,23), rep(4,20), rep(5,9)
rep(6,3), rep(7,3), rep(8,3), rep(9,4), rep(l0,3))

library (Delaporte)
dlpd=function (theta,y) {
aa=thetal[l]
beta=thetal[2]
lambda=theta[3]
fO0=exp (-lambda-aa*log (l+beta))
z=ddelap (y,aa,beta, lambda, log=FALSE)
LL=log(z)-log (1-£0)

+ 4+ 4+ + 4+ VVV 4V
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On Zero Truncated...

+ return(Re(-sum(LL)))
+ )
> fit= optim(fn =dlpd, c(aa=0.003, beta=3.11, lambda=0.06), method="BFGS",y=y, hessian = TRUE)
> fit
$par
aa beta lambda
0.003831181 3.054836649 0.071978555

Svalue
[1] 1103.886
Scounts
function gradient

104 9
$convergence
[1] ©
Smessage
NULL
Shessian

aa beta lambda

aa 5500689.216 6368.21580 -97856.9534
beta 6368.216 11.74804 -225.0077

lambda -97856.953 -225.00770 13261.4181

>
> #, method="BFGS"
> ##Nelder-Mead
> f#est=fitSestimate
> est=fit$par
>
> #Parameter Standard Errors
> covm <—- solve(fitShessian)
> sel=sqgrt (diag(covm))
> Z.value=est/sel
> pvalue=2« (l-pnorm(abs (Z.value)))
> ra=round (cbind(est, sel,Z.value, pvalue),digits=4)
> ra

est sel Z.value pvalue
aa 0.0038 0.0007 5.3960 0
beta 3.0548 0.5511 5.5428 0
lambda 0.0720 0.0107 6.7014 0
>
>
> k=3 ##Number of estimated parameters
> AIC_COMu = 2% (fit$value)+ 2xk
> AIC_COMu
[1] 2213.772
> n=length (y)
> BIC_COMu = 2+ (fit$value)+ kxlog(n)
> YIC=cbind (AIC_COMu, BIC_COMu)
> YIC

AIC_COMu BIC_COMu
1,] 2213.772 2232.118

##Generate estimated probabilities, mean and variance##

aa <- fit$par[1l]

beta <- fit$par[2]

lambda <- fitS$par[3]

DF <- 3345

f00=exp (-lambda-aaxlog (l+beta))

# Initialize result storage
results <- data.frame (

i = integer(),
prob = numeric(),
cum = numeric(),
fitl = numeric(),
ssl = numeric(),
mean = numeric(),
vl = numeric(),

var = numeric ()

)

# Initialize cumulative variables

ssl <= 0
cum <- 0
mean <—- 0
vl <- 0

# Loop through s from 1 to 10

for (1 in 1:10) {

zz=ddelap (i, aa, beta, lambda, log=FALSE)
LL3=log(zz)-log(1-£00)

prob=exp (LL3)

+ ++VVVVVVVVV+++++++++VVVVVVVVVVVVVV-—
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35 Lawal

+ fitl <- DF % prob

+ ssl <- ssl+fitl

+ cum <- cum + prob

+ mean <- meant+ (prob * 1i)

+ vl <= vl + (1 » 1 = prob)

+ var <- vl - (mean * mean)

+

+ # Store results

+ results <- rbind(results, data.frame(

+ i=1i,

+ prob = prob,

+ cum=cum,

+ fitl = fitl,

+ ssl = ssl,

+ mean = mean,

+ vl = vl,

+ var = var

+ ))

+ 3

>

> # Print final results

> round(results, 4)
i prob cum fitl ssl mean vl var
1 0.9310 0.9310 3114.2745 3114.274 0.9310 0.9310 0.0642
2 0.0484 0.9794 161.8032 3276.078 1.0278 1.1245 0.0682
3 0.0087 0.9881 29.0112 3305.089 1.0538 1.2026 0.0921
4 0.0044 0.9925 14.7418 3319.831 1.0714 1.2731 0.1252
5 0.0026 0.9951 8.7911 3328.622 1.0846 1.3388 0.1625
6 0.0016 0.9967 5.4956 3334.117 1.0944 1.3979 0.2002
7 0.0011 0.9978 3.5395 3337.657 1.1018 1.4498 0.2358
8 0.0007 0.9985 2.3291 3339.986 1.1074 1.4943 0.2680
9 0.0005 0.9990 1.5578 3341.544 1.1116 1.5321 0.2965
10 0.0003 0.9993 1.0553 3342.599 1.1147 1.5636 0.3210

# Print final results
#round (print (results), 4)

>
>

>

>

> ##Compute mean and variance using the method of moments##
> suma=0

> sumb=0

> for (k in 1:1000){

+ fOl=exp (-lambda-aa*log(l+beta))

+ zf=ddelap (k,aa,beta, lambda, log=FALSE)

+ LL2=log (k) +log(zf)-log(1-£01)

+ LL3=2xlog (k) +log(zf)-log(1-£f01

+ suma=sumatexp (LL2)
+ sumb=sumb+exp (LL3)
+ 1
> mu=suma
> sig=sumb- (mu*mu)
> xx=((y-mu)**2)/sig
> yg=cbind (mu, sig)
> head(yq, 10)

mu sig
lambda 1.124358 0.4346404
>
> X2=sum( ((y-mu) "2)/sig)
> X2
[1] 3119.284
>
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