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Abstract. Canonical correlation analysis (CCA) is a multivariate statistical technique that
describes the associations between two sets of variables. In this paper a formulation of
Canonical correlation analysis based on the Least Absolute Shrinkage and Selection Op-
erator (LASSO) is utilized to examine the relationship between plant characteristics and
oil palm yield. The modified CCA based on LASSO was applied to oil palm data from
Nigerian Institute for Oil Palm Research (NIFOR), Nigeria. The analysis was based on
an approximation using a modified optim algorithm in R statistical package. The results
showed that the modified CCA approach based on LASSO distinctively selected the pair-
wise variables that mutually maximized the canonical correlation. The method identified
optimal combinations of the key variables on oil palm characteristics for accurate pre-
diction plant vegetative growth and development. The newly developed approach is sug-
gested as a better alternative to the classical CCA in assessing plant development and
yield.
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1. Introduction

Canonical Correlation Analysis (CCA) has certain maximal properties that are
very similar to the principal component analysis (PCA), which have been stud-
ied intensively. However, the biggest difference between these two methods is
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that CCA considers the relationship between two sets of variables, while PCA
focuses on the interrelationship within only one set of variables. Moreover,
CCA is more equipped in taking care of several predictors at a time by finding
the pair of some basic vectors that maximize the correlation of a set of paired
variables than all the multivariate technique mentioned earlier which treat only
one predictor at a particular time, that is two sets of variables can be consid-
ered as different views of the same object or views of different objects, and are
assumed to contain some joint information in the correlations between them.
The theory of Canonical Correlation Analysis (CCA) has developed rapidly
since its introduction by Harold Hotelling in 1935. It has taken a pre-eminent
position in the field of statistics and is increasingly deployed in a variety of sce-
narios. Several common parametric tests of significance can be treated as special
cases of CCA (Knapp, 1978). The CCA technique is seen as the cornerstone of
multivariate statistics, for discovery and quantification of associations between
two sets of variables (Hardle and Simar, 2007). The areas of application of
CCA is wide and include the sciences, engineering, agriculture, epidemiology,
and the humanities.
The CCA approach explores a linear combination of all the variables in a mul-
tivariate dataset that correlates maximally with a linear composite of all the
variables in the other multivariate dataset (Thompson, 1984). Muller (1982)
proposed an alternative approach which presented CCA as a least squares prob-
lem. This multivariate multiple regression representation of CCA amounts to
finding an estimate of β, α and D(pk) in the following model equation:

Y β = XαD(pk) + ε (1)

The matrices β, α, and D(pk) correspond in the sense that the kth columns of β
and α provide the linear combinations that are correlated ρk , which is the (k, k)
element of D(pk). However, the multivariate formulation introduced greater
complication as a result of alternating the vectors with matrices. For instance,
the equivalence of β, α, and D(pk) in the standard statement of CCA are vec-
tors (not matrices). Hence, the standard statement of canonical correlation has
more in common with the univariate statement than with the multivariate that
was developed in the study. Hence, Vinod (1976) proposed the canonical ridge,
which is an adaptation of the ridge regression concept of Hoerl and Kennard
(1970) to the framework of CCA, to handle the problem of matrix inversion.
The canonical ridge replaces the matrices C−1xx and C−1yy with ((Cxx + k1I) and
((Cxx+k2I) respectively. By adding the penalty terms k1 and k2 to the diagonal
elements of the sample covariance matrices, a more reliable and stable estimates
are obtained when the data are nearly or exactly collinear.
For this case,the CCA optimization problem in Hotelling (1936) is re-
formulated as;

max
ax,by

aTxCxyby

s.t aTx (Cxx + k1I)ax = 1,

bTy (Cyy + k2I)by = 1

(2)

where k1 > 0, k2 > 0 and I is identity matrix.
However, in terms of computational time, the canonical ridge is higher com-
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pared to that of CCA. Another problem with it is that the values of k1 and
k2 provided by the cross validation algorithm are closely tied to the size and
discretization of the search grid. Ayodeji and Obilade (2016) presented a prob-
abilistic formulation for CCA using a novel combination of the techniques of
multiple regression of two Gaussian random vectors in order to overcome the
problem of inaccurate estimation associated with CCA.
In view of these limitations, this study presents a formulation of hybrid model
for CCA using the techniques of least absolute shrinkage and selection operator
(LASSO) regression, with implications for the simple and multiple correlations.
Such formulation enhances the understanding of CCA as a model-based method
that is useful in modeling and prediction. The goal is to consistently identify the
variables relevant for regression and also to avoids matrix inverse computation
problem usually associated with CCA, which is done for both the predictors
and responses. This was used in the determination of relationship in vegetative
growth in oil palm, where the estimate of the relationship between plant charac-
teristics be independent variables and yield components be dependent variables
of 210 oil palm plants population collected from Nigerian Institute For Oil Palm
Research (NIFOR), Edo State, Nigeria.
Some notable application of CCA after its proposition by Hotelling (1935) was
first applied in economics study by Waugh (1942) to examine the relationship
between wheat characteristics to flour characteristics and hence, demonstrated
that desirable wheat is high in texture, density and protein content. Thereafter,
Cankaya et al. (2010) used CCA to estimate relationships between plant char-
acters X set [fruit length (FL), fruit width (FW), fruit wall thickness (FWT),
placenta length(PL), stem thickness (ST), plant height (PH), leaf length (LL),
leaf width (LW), flowering time (FT) (50 percent), and time to maturity (TM)]
as the independent variables, and yield components Y set[total fruit weight
per plant (FW/P), average fruit weight (AFW) and number of fruits per plant
(FN/P)] as dependent variables of 56 red peppers populations collected from the
Samsun province in the Black Sea Region of Turkey. All canonical correlation
coefficients (0.708, 0.635, 0.413) between the pairs of canonical variables were
found to be significant (P ¡ 0.01). The findings obtained from the CCA indicated
that FN/P had the largest contribution for the explanatory capacity of canonical
variables estimated from yield components of 56 red pepper populations when
compared with other yield components. Also, Balkaya et al. (2011) used CCA
to estimate relationships between plant characteristics, X set [fruit length (FL),
fruit diameter (FD), flesh thickness (FT), fiber weight per fruit (FW), length
of seed cavity (LSC), skin thickness (ST), vine length (VL), branch number
per plant (BN), leaf length (LL), leaf width (LW), female flowering time (50
percentage) (FFT), and time to maturity (TM)], and yield components Y set [
total fruit weight per plant (FW/P), average fruit weight (AFW) and number of
fruits per plant (FN/P)] of 117 winter squash (Cucurbita maxima Duch) in pop-
ulations collected from the Black Sea Region of Turkey. The findings obtained
from the CCA indicated that FW/P had the largest contribution for the explana-
tory capacity of canonical variables estimated from yield components of 117
Turkish winter squash (Cucurbita maxima Duch.) populations when compared
with other yield components.
More also, Daher et al. (2018) used CCA to obtain estimates of coefficients of
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phenotypic, genotypic, and residual correlation and evaluated the degree of as-
sociation between morpho-agronomic and chemical traits in 132 interspecific
hybrids between elephant grass and millet. Hence, Vieira et al. (2019) studied
the relationship between nutrients and plant growth using the CCA. Canonical
correlations showed that biomass was the most salient morphological charac-
teristic in relation to the growth of Tectona grandis seedlings.

2. Materials and Method

2.1 Data Description
The study on oil palm plants population data collected from Nigerian Institute
for Oil Palm Research (NIFOR), Edo State, Nigeria. We consider an n = 210
observation on two sets of standardized variables X and Y in the form of the
observed measurements as a multivariate response, The data matrices X and Y
of sizes n x p and n x q, where n = 210, p = 4 and q = 3, respectively. The data is
standardized such that every variable has zero mean and unit variance. This for-
mulation will be used in the determination of relationship between plant char-
acteristics been independent variables [X set; Fruit Height (FH), Fruit Diameter
(FD), Fruit Leaflet (FL), Fruit Leaf Area (FLA)] and yield components been
dependent variables [ Y set; Average Fruit Weight (AFW), Number of Fruit Per
Plant (NFPP), Fresh Fruit Bunch Weight (FFBW)] of 210 oil palm plants pop-
ulation collected from Nigerian Institute for Oil Palm Research (NIFOR), Edo
State, Nigeria.

2.2 Canonical Correlation Analysis (CCA)
CCA model formulations by Hotelling (1935) applied the technique to a data
set in which one set of variables consisted of mental tests and the other involved
physical measurements. With the objective to finding pairs of some basic vec-
tors that maximize the correlation of a set of paired variables. This was achieved
by considering two set of multivariate random variables X ∈ Rp and Y ∈ Rq,
where X = (x1, x2..., xp) and Y = (y1, y2..., yq) are column vectors (Bach and
Jordan (2005)).
The CCA procedure is to choose directions ax ∈ Rp and by ∈ Rq onto vectors
X and Y respectively, such that the projections are maximize. Let ux ∈ Rn and
vy ∈ Rn be projections of X ∈ Rn×p and Y ∈ Rn×q, where p, q ⩽ n, n ⩽ N
Since CCA is based on linear transformations, we have:

ux = aTXX

vy = bTY Y
(3)

and

Cxx ∈ Rp×p is the covariance matrix of set X
Cyy ∈ Rq×q is the covariance matrix of set Y
Cxy = CT

yx ∈ Rp×q is the cross-covariance matrice between set X and Y .
http://www.bjs-uniben.org/
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The correlation coefficient ρ of ux and vy is given as;

ρ(u, v) =
cov(u, v)√

var(u)var(v)
=

aTxCxyby√
(aTxCxxax)(bTy Cyyby)

(4)

The joint covariance matrix is then(
CXX CXY
CXY CY Y

)
Now the eigenvalues and eigenvectors of the characteristic equation are com-
puted

(C−1yy CyxC
−1
xxCxy − ρ21)by = 0 (5)

In linear CCA, the canonical correlations equal to the square roots of the eigen-
values.
Since its proposition. Here, we make used of the interventions in the area of
CCA modelling, which has been explored in various fields of science (Ayodeji
and Obilade (2016)). In line with the conditions of CCA, we wish to find a pair
of vectors α and β which yields set of composite variables Xα and Y β such
that Y β is most predictable from the variables of X . In other words, we seek
a pair of vectors (α, β) that maximizes the corresponding lagrange function for
equation (2) given as;

Q = −n

2
log2π − 1

2
(Y β −Xα)′(Y β −Xα)− n

2
λ1

p∑
i=1

| αi | −
n

2
λ2

q∑
j=1

| βj |

−K

2
(α′X ′Xα− n)− L

2
(β′Y ′Y β − n)

(6)

where K and L denote the lagrange multipliers, λ1, λ2 that control the shrinkage
that is applied to parameters α, β respectively.
The next step is for us to look for the first order condition, by taking derivatives
with respect to α and β, and equating to zero. Then the first order conditions in
equation (3) are;

∂Q

∂α
= X ′Y β − (1 +K)X ′Xα− n

2
λ1sign(α) = 0 (7)

and

∂Q

∂β
= Y ′Xα− (1 + L)Y ′Y β − n

2
λ2sign(β) = 0 (8)

Dividing equations (4) and (5) by n and multiplying by α
′
and β′ we obtain the

equations respectively as;

Cxyβ − ACxxα−
λ1
2
sign(α) = 0 (9)
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and

Cyxα−BCyyβ −
λ2
2
sign(β) = 0 (10)

where A = 1 +K and B = 1 + L, shows that A = B = αTCXY β = ρ.
Consequently, we have

Cxyβ − ρCxxα−
λ1
2
sign(α) = 0 (11)

and

Cyxα− ρCyyβ −
λ2
2
sign(β) = 0 (12)

The solution of the stationary equations (8) and (9) will yield the canonical
correlation ρ and canonical variates α, β respectively. Thus, from equation
(8) and (9) are the estimates of α = (α1, α2, ..., αp). and are the estimates of
β = (β1, β2, ..., βp) respectively.

Algorithm for modified CCA
• Read in the dataset into the R interface.
• Input:X and Y be two data matrices.
• X as matrix of independent variables.
• Y as matrix of dependent variables.
• scale X variables.
• scale Y variables.
• Estimate the log likelihood. penalized Maximum likelihood function
• par: parameters to be estimated.
• center X will be standardized predictor matrix with no intercept column

in the modeling function.
• center Y will be standardized response matrix in the modeling function.
• state penalty approach.
• calculate log likelihood.
• Penalized Log Likelihood Objective Function.
• Initial values. Lambda1 is the last term.
• Normalize the alpha parameters.
• Normalize the beta parameters.
• Obtain the Estimate Weight Parameter and Rho value.
• alpha.
• beta.
• Rho.
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Code
The Algorithm For The Modified CCA Procedure

• Define: a,b, Xn×p, Yn×qwherep < q, U = aTX, V = bTY
• Input: Xn×p, Yn×qwherep < q
• Calculate E(X) = µx, E(Y ) = µy, Covar(X) = Cxx, Covar(Y ) =
Cyy, Covar(X, Y ) = Cxy, a, b such that corr(U, V ) = ρ =

cov(Xα,Y β)√
var(Xα)var(Y β)

is maximized
• Initialize α, β to have L2 norm;
• Iterate the following two steps until convergence;

(a) α← argmaxα(Y β −Xα)T (Y β −Xα) subject to (Xα)T (Xα) = 1;
(b) β ← argmaxβ(Y β −Xα)T (Y β −Xα) subject to (Y β)T (Y β) = 1.

• Obtain the correlation matrix
• Obtain the stationary equation (C−1xxCxyC

−1
yy Cyx − ρ21)α = 0

• Calculate: (i)ρ∗2i which is the ith eigenvalue of C−1xxCxyC
−1
yy Cyx and αi

which is its corresponding ith eigenvector.

• Start if: i = 1 : p
Maximize: covar(U,V)
subject to: covar(Ui) = 1 and covar(Vi) = 1

• Calculate: (i)ρ∗2i which is the ith eigenvalue of C
1
2
xxCxyC

1
2
yyCyxC

1
2
xx and ei

which is its corresponding ith eigenvector.
(ii) ρ∗2i which is the ith largest eigenvalue of C

1
2
yyCyxC

1
2
xxCxyC

1
2
yy and fi

which is its corresponding ith eigenvector.
(iii) in calculating these ith value, ensure that we find those linear com-
binations which uncorrelated with the preceding 1, 2, ..., i − 1 number of
canonical variables,
(iv) ai = eiC

1
2
xx and ai = fiC

1
2
yy

(v) UiaiX and VibiY
• END if
• REPORT:(ρ∗2i , ρ∗2i , ..., ρ∗2i ) and (Ui, Vi), ..., (Up, Vp)
• END

3. Results and Discussion

Descriptive statistics for the examined characters are presented below;

Table 1: Descriptive values for the examined characters (n = 210, p = 4, q = 3)
Plant characters X variable set Yield components Y variable set

mean ± SD mean ± SD
Height 307.9 ± 86.4 Fruit Weight 2.68 ± 0.71

Diameter 153.6 ± 66.2 Number of Fruit Per Plant 3.16± 0.92
Leaflet 30.4± 6.5 Fresh Fruit Bunch Weight 1.09 ± 0.41

Leaf Area 96.2 ± 26.7
where SD: Standard deviation.
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Table 2: Bivariate correlation for variables set X and Y
H D N L AvgL LA B W Avg W

Height 1.000
Diameter 0.942∗∗ 1.000

Number Leaflet 0.838 0.860∗∗ 1.000
Avg Leaflets −0.366 −0.275 −0.237 1.000

Leaf Area 0.695 0.705 0.626 −0.115∗ 1.000
Bunch Weight 0.878∗∗ 0.835 0.740 -0.307 0.617 1.000
Avg Weight 0.667 0.653 0.526 -0.235 0.522 0.694 1.000

Table 1 shows the bivariate correlations displaying the relationships among the
traits of oil palm populations. While Table 2 revealed highest correlation was
predicted between paired variables, while the lowest correlations were between
for all variables traits.

3.1 Data Application Results

Table 3: Canonical correlation of the various models on Oil Palm Data set
Model Variable Technique Rho value
CCA Oil Palm data n=210,p=4, q=3 0.904

(1935)
λ1 = 0, λ2 = 0

Ayodeji and Oil Palm data n=210,p=4, q=3 0.904
Obilade (2016).

λ1 = 0, λ2 = 0
Witten et al., Oil Palm data n=210,p=4, q=3 0.878

(2009). k=3
PMA

λ1 = 0.3, λ2 = 0.3
Proposed model Oil Palm data n=210,p=4, q=3 0.904

t= 0.1
λ1 = 0, λ2 = 0

Table 3 show the result for canonical correlation of the various models on oil
palm data set from NIFOR, where it was observed that the modified CCA based
on LASSO developed gave equivalent results in Rho value (P-value)when com-
pared to others existing models.

3.2 Test of Significance of the Canonical Correlation Coefficient
The canonical correlation coefficients test for the existence of overall relation-
ship between two sets of variables and redundancy measures the magnitude of
relationships.

Table 4: Effect .. Within Cells Regression Multivariate Tests of Significance
Test Name Value Approximate F Hypothesis DF Error DF Significance of F (p)

Pillais .88535 21.45719 12.00 615.00 ¡ 0.001
Hotellings 4.55799 76.59961 12.00 605.00 ¡ 0.001

Wilks .17010 42.69073 12.00 537.38 ¡ 0.001
Roys .81778
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In Table 4 above, the output start with a sample description and then shows
the general fit of the model reporting Pillai’s, Hotelling’s Wilk’s and Roy’s
multivariate criteria. The interpretation was based on Wilks’s lambda (λ), as
it tends to have the most general applicability. The results showed that the full
model was statistically significant, with a Wilks’s λ value of 0.1701, F = 42.691,
p < .001. Following the results presented, the null hypothesis that there is no
relationship between the variable sets is rejected (i.e., reject H0 = 0) and thus,
conclude that there probably was a relationship between observed variables.

3.3 Hierarchical statistical significance tests in which only the last
canonical function is tested

Table 5: Dimension Reduction Analysis
Roots Wilks Lambda F Hypothesis DF Error DF Significance of F
1 to 3 .17010 42.69073 12.00 537.38 .000
2 to 3 .93345 2.38243 6.00 408.00 .028
3 to 3 .97713 2.39940 2.00 205.00 .093

The tests of dimensionality for the canonical correlation analysis as shown in
Table 5, also reveals the tests of significance of each of the roots. It is seen
that of the three possible roots only the first root is significant with p ≤ .05
while roots 2 to 3 and 3 to 3 were not statistically significant in isolation. The
summary of the tests of dimensionality indicated that the relationship was
largely captured by the first functions in the canonical model.

The study presents a new formulation for identifying optimal combinations of
the key variables on oil palm characteristics for accurate prediction of its vegeta-
tive growth and development. The findings obtained from the CCA indicate that
the correlation between first pair of canonical variates, which shows that data
sets are highly correlated. The result further revealed that FFBW had the largest
contribution for the explanatory capacity of canonical variables estimated from
yield components of 210 Oil Palm plantations when compared with other yield
components. PH and PD had largest contribution for the explanatory capacity
of canonical variables estimated from plant characteristics when compared with
the other characteristics.

4. Conclusion

This paper developed a modified canonical correlation analysis approach based
on the LASSO technique. The modified CCA method based on LASSO dis-
tinctively selected the pairwise variables that mutually maximized the canoni-
cal correlation using oil palm yield data from Nigerian Institute for Oil Palm
Research (NIFOR), Nigeria. The results showed that plant height and plant di-
ameter should be used with the aim of increasing oil palm yield. The newly
developed approach is suggested as a viable alternative to the classical CCA in
assessing plant characteristics and yield.
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