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1. Introduction

Prior to the development of prediction equations involving important variables and the optimal process op-
erating conditions of a system, a screening design is usually completed. The screening design, which is the
initial stage of many industrial experiments and process development, is used to determine efficiently and
effectively a small number of potential factors among a large number of factors that may affect a particular
response (Georgiou et al., 2014; Alhelali et al., 2020). Traditional screening designs, such as the two-level
fractional factorial designs, are commonly used to achieve this purpose after one set of experiment (Olsen
et al., 2016). The designs are intended to find significant main effects, rather than interaction effects (cf.
Montgomery and Jennings, 2006). This is unlike experiments based on full factorial designs, where all fac-
tors and their interactions are investigated (for instance, in Santamaria et al. (2019), a full 25 factorial design
was conducted to quantify the effects of five construction site factors including crew experience, compaction
method, mixing time, curing humidity and curing temperature).

Let 2k−q be a regular fractional factorial design at two levels with k factors and 2k−q runs constructed by
choosing q > 0 independent fractional generators from the set of all factorial effects in the 2k factorial layout.
The integer q is the degree of fractionation. This kind of experiment is well known in the literature (Vincente
et al., 1998; Wu and Hamada, 2000) and it has several economic benefits to the experimenter (Mee, 2009).
The run size economy of the fractional factorial design results to aliasing effects. The aliasing effect is used
to describe factorial effects whose estimates are indistinguishable. The q independent fractional generators
may be chosen in different ways. As a consequence distinct sets of fractional generators may give distinct
sets of designs. To select the ’best’ design, certain criteria are used, for instance, the resolution and the
minimum aberration (Mee, 2009; Wu and Hamada, 2000). Most researchers rely on the minimum aberration
(MA) criterion as it can discriminate among designs of the same resolution. There are a number of papers in
the literature, which discuss the concept and the practical use of the MA criterion in screening experiments.
For details refer to Fries and Hunter (1980), Tang and Wu (1996), Chen and Hedayat (1998), Cheng and
Mukerjee (1998), Hu and Zhang (2009) and Ekhosuehi et al. (2018).

Perhaps the MA 2k−q fractional factorial designs are the most commonly used designs in screening ex-
periments. The aliased sets from such designs together with the defining relation form an Abelian group
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with multiplication being the corresponding column summation mod 2 (Chen, 1998; Liao and Chai, 2009).
In spite of the statistical overtones on the successes that MA 2k−q fractional factorial designs have had in
screening experiments, it is important to know whether there are other algebraic properties of the design
criterion. This study focuses on the theoretic aspects of the 2k−q design. The applied aspects of the design
can be found elsewhere (Montgomery and Jennings, 2006; Olsen et al., 2016). The theoretical underpinning
of this study is hinged on the theory of finite Albelian groups. For a discussion on this theory and other
algebraic statistics in design of experiments refer to Pistone et al. (2009).

This paper is written to assist in answering questions on MA 2k−q fractional factorial designs of the fol-
lowing sort: (i) Is the group formed by the aliasing sets cyclic? (ii) Is it possible to find a subgroup from
the partitioned subsets of the defining relation? (iii) Can we define a homomorphism using the word length?
These questions on the structure of MA 2k−q designs, which are used in screening experiments, are cru-
cial in experimental design. As earlier mentioned in Bate and Chatfield (2016a), modern statistical software
packages allow the non-statisticians to perform experimental design without correctly identifying the un-
derlying structure of the experimental design and this can lead to incorrect model selection and misleading
inferences. In another study, Bate and Chatfield (2016b) provided a practical situation where the structure of
an experimental design coupled with randomisation was used in the construction of mixed model statistical
analysis. Regardless of this practical problem, the algebraic structure of factorial designs sums up a prob-
lem in the literature (Bailey, 1985). Bailey (1985) had attempted this problem by using the theory of finite
Abelian groups to simplify the search for and construction of factorial designs. However, the study restricted
attention to designs with group homomorphism.

This study is aimed at describing the features of the eight-run MA 2k−q fractional factorial designs from
an algebraic perspective. It is important to mention here that several higher runs 2k−q designs are available
in the literature. For example, the screening experiment on the process of synthesising TiO2 in the laboratory
was carried out in Olsen et al. (2016) with a 16-run 210−6III fractional factorial design. This study is restricted
to the 8-run MA 2k−q fractional factorial designs for convenience. Even so, the obtained results herein can
be extended to other higher runs two-level fractional factorial designs.

To avoid confusion in the main part of this paper and make the paper clearer to a larger audience, the
following definitions are given (Herstein, 1975).

DEFINITION 1.1 A nonempty set of elements G is said to form a group if in G there is defined a binary
operation, called the product and denoted by ∗, such that

i. a, b ∈ G implies that a ∗ b ∈ G (closed)
ii. a, b, c ∈ G implies that a ∗ (b ∗ c) = (a ∗ b) ∗ c (associative law)

iii. There exists an element e ∈ G such that a ∗ e = e ∗ a = a for all a ∈ G (the existence of an identity
element in G)

iv. For every a ∈ G, there exists an element a−1 ∈ G such that a ∗ a−1 = a−1 ∗ a = e (the existence of
inverses in G).

DEFINITION 1.2 A group G is said to be Abelian (or commutative) if for every a, b ∈ G, a ∗ b = b ∗ a.

DEFINITION 1.3 The order of a group G, denoted by |G|, is the number of elements it contains. If |G| <∞,
then G is said to be a finite group.

DEFINITION 1.4 If G is a group and a ∈ G, the order (or period) of a is the least positive integer m such
that am = e. If no such integer exists, we say that a is of infinite order.

DEFINITION 1.5 Let G be a group and p a prime. A group of order pn for some n ≥ 0 is called a p−group.

DEFINITION 1.6 A mapping f from a group G into a group G′ is called a homomorphism if, for every
a, b ∈ G, f(ab) = f(a)f(b). In addition, if f is one-to-one and onto, then f is called an isomorphism, and
G and G′ are said to be isomorphic.

Unless otherwise explained, all terminologies and notations used in this paper are consistent with that of
Herstein (1975) and the experimental design literature (cf. Wu and Hamada, 2000).
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2. Materials and method

This section contains the proof of the algebraic properties of the eight-run MA 2k−q fractional factorial
designs mentioned in the Introduction. In addition, a list of the members in the class of eight-run 2k−q

fractional factorials is provided and an expression for the binary product between any two aliased sets of the
group in terms of the defining words is given.

Let A = {ai : i = 1, 2, · · · , k} represent the set of factor labels (or letters) for the k factors. We consider a
special kind of set where the equality sign may as well be used to list the elements. The equality sign is used
to indicate aliases, that is, the factor effects that cannot be estimated independently. Let I denote the identity
element of the MA 2k−q fractional factorial design. Then the defining relation of the form I = a1a2a4 =
a1a3a5 = a2a3a4a5 is the set {I, a1a2a4, a1a3a5, a2a3a4a5}. The elements of the set of defining relation
are called words and the number of factors in each word is the word length. The aliasing sets are derived
from the defining relation. In this paper, the notation Gu, where u is a positive integer, is used to denote the
aliasing sets.

Let Bj =
{
aj : aj =

∏
r 6=j ar, ar ∈ A

}
be the defining word of a defining contrast subgroup of word

length mj =
∣∣∣∏r 6=j ar

∣∣∣, j = k−q+1, k−q+2, · · · , k. The set
⋃k

j=k−q+1Bj , such that
⋂k

j=k−q+1Bj = ∅, is
called the set of design generators. The number of words in the set of design generators is q. For the q defining

words, the total number of identity relations is expressed as
∑q

r=1

(
q
r

)
. The product of a defining word

with itself gives an identity, I, that is, I = aj
∏

r 6=j ar, ar ∈ A. Equating these identities gives the defining
relation. The defining relation is also called the defining contrast subgroup. The defining contrast subgroup
may be partitioned according to the number of possible ways the identity relation can be obtained. Let Sk−q
be the defining set, that is, the set of all possible combinations of the defining words in

⋃k
j=k−q+1Bj that

would give the identity relation, I, for the fractional factorial with k−q main factors. This set, Sk−q, uniquely
determines a regular fractional factorial design.

Let d denote the regular 2k−q fractional factorial design. From the defining set, Sk−q, the word length
pattern of the design is determined. The word length pattern of the design, d, is a vector W (d) =

(A3(d), A4(d), · · · , Ak(d)), where Ar(d) is the number of words of length r in Sk−q with
∑k

r=3Ar(d) =∑q
r=1

(
q
r

)
(Chen, 1998). The summand

(
q
r

)
= q!

r!(q−r)! corresponds to the subtotal of the words of length

r in Sk−q. The resolution of the design d is the smallest r satisfying Ar(d) ≥ 1. The design d is said to have
minimum aberration if it has the minimum number of words in Sk−q among other designs (Fries and Hunter,
1980).

Let G be a group formed by the aliasing sets, Gu, together with the identity element, represented as G0,
of the MA 2k−q fractional factorial design. That is, the aliasing sets, Gu, and the identity element, G0, are
elements of G. The identity element, G0, is the defining relation from which the other elements of G are
derived. Let ϕ(Gu, Gv) be the number of letters common to the maximum length of the defining words of
the aliased sets Gu, Gv ∈ G, and such that ϕ(Gu, Gu) = m(Gu) and ϕ(Gu, G0) = 0. The notation m(Gu)
denotes the maximum length of the defining word of the aliased set Gu. Using these notations and symbols,
the following propositions are stated with their proofs.

PROPOSITION 2.1 The group G formed by the aliasing sets together with the identity relation of the MA
2k−q fractional factorial design is a non-cyclic, finite Abelian p−group.

Proof. For every MA 2k−q fractional factorial design, there are 2k−q − 1 columns generated by the k − q
independent columns. These 2k−q − 1 columns comprise of factorial effects that are aliased. The 2k−q − 1
aliased sets together with the defining relation I form a group G and the order of the group is |G| = 2k−q.
Since 2 is a prime number with k − q > 0, the group G is a p−group. Moreover, 2k−q < ∞ implies that G
is a finite group. For each element Gu ∈ G, Gu ∗Gu = I implies that |Gu| = 2 and that the generating set of
Gu is {I, Gu}. Since every element of G has order 2, none of the elements of G generates G. Thus, G is not
cyclic. For all Gu, Gv ∈ G, Gu 6= Gv, Gu ∗Gv ∈ G (by the property of closure). Since every element of G
has order 2, (Gu ∗Gv) ∗ (Gu ∗Gv) = I. Multiplying from the left hand side by Gu and from the right hand
side by Gv, Gu ∗ (Gu ∗Gv) ∗ (Gu ∗Gv) ∗Gv = Gu ∗Gv. By the property of associativity, the operation is
the same as (Gu ∗Gu) ∗Gv ∗Gu ∗ (Gv ∗Gv) = Gu ∗Gv, which simplifies to Gv ∗Gu = Gu ∗Gv. Hence,
G is Abelian. �
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PROPOSITION 2.2 Let Zk+1 = {0, 1, 2, · · · , k} be a set of integer modulo k + 1. The mapping m : G →
Zk+1, where m is the maximum length of the defining word of an aliased set in G, is not a homomorphism,
and hence G and Zk+1 are not isomorphic.

Proof. Consider the aliased sets Gu, Gv ∈ G, u 6= v. Suppose we count the words of the maximum length
of the defining words in Gu and then count the one in Gv. Then every letter common to both Gu and Gv

would have been counted twice. Since Gu ∗ Gv is another element in G with all the letters either in Gu or
Gv, but not both (as aj ∗ aj = I, aj ∈ A), then every letter common to the maximum length of the defining
words of the aliased sets Gu and Gv should be deleted in Gu ∗ Gv. Hence, the binary product of any two
aliased sets Gu, Gv ∈ G, u 6= v, in terms of the function m is given as

m(Gu ∗Gv) = m(Gu) +m(Gv)− 2ϕ(Gu, Gv) 6= m(Gu)m(Gv).

Moreover, for u = v, Gu ∗Gu = G0 so that

m(G0) = m(Gu ∗Gu) = m(Gu) +m(Gu)− 2ϕ(Gu, Gu) = 0

as ϕ(Gu, Gu) = m(Gu). For Gu 6= G0, m(Gu ∗ Gu) 6= m(Gu)m(Gu). Similarly, m(Gu ∗ G0) 6=
m(Gu)m(G0). Hence m is not a homomorphism. Since m is not a homomorphism, then G and Zk+1 are not
isomorphic. �

PROPOSITION 2.3 For the 2k−q fractional factorial designs with k − q = 3, k ≤ 7 and 0 < q ≤ 4.

Proof. For a fractional factorial design to exist, the degree of fractionation q must be a positive integer. So
q > 0. For the k − q main factors, the number of possible interactions may be 2, 3, · · · , or k − q, so that the

possible number of ways in which the design generators can be constructed are
(
k − q
2

)
,
(
k − q
3

)
, · · · or(

k − q
k − q

)
. The total number of possible ways is

∑k−q
r=3

(
k − q
r − 1

)
, which is an upper bound for the degree of

fractionation, q, that is,

q ≤
k−q∑
r=3

(
k − q
r − 1

)
.

With k − q = 3, q ≤ 4. Hence, k ≤ 7 and 0 < q ≤ 4. �

3. Illustrative examples

In this section it is shown by examples that the partitioned aliasing subsets of the MA 2k−q design with
k − q = 3, which are constructed according to the number of possible ways the identity relation can be
obtained, are not subgroups. It is convenient to describe the MA 2k−q designs with k− q = 3 by considering
the multiplication tables for the designs. From Proposition 2.3, the list of members in the class of eight-run
regular 2k−q design are 24−1, 25−2, 26−3 and 27−4. Using the MA criterion, it can be verified that the MA
2k−q designs with k − q = 3 are:

(1) The MA 24−1IV design with B4 = {a4 : a4 = a1a2a3},
(2) The MA 25−2III design with B4 = {a4 : a4 = a1a2}, B5 = {a5 : a5 = a1a3},
(3) The MA 26−3III design with B4 = {a4 : a4 = a1a2}, B5 = {a5 : a5 = a1a3}, B6 =
{a6 : a6 = a2a3},

(4) The MA 27−4III design with B4 = {a4 : a4 = a1a2}, B5 = {a5 : a5 = a1a3}, B6 =
{a6 : a6 = a2a3}, B7 = {a7 : a7 = a1a2a3},
where the subscript in the MA 2k−q fractional factorials denotes the resolution of the design.

Let H2k−q
R

i ⊆ G be the partitioned aliasing sets of an MA 2k−q design with k − q = 3 and resolution R

for the decomposition index i. This study examines the binary operation between any two elements in H
2k−q
R

i
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for each class of MA 2k−q design with k− q = 3 and constructs multiplication tables for the outcomes. The
idea behind the multiplication is based on ensuring that all the factor interactions in Gu ∗ Gv are contained
in H

2k−q
R

i .

EXAMPLE 3.1 MA 24−1IV design with B4 = {a4 : a4 = a1a2a3}

The defining set for the MA 24−1IV design is given as

S4−1 = {I = a1a2a3a4} .

Apparently, the defining relation, I, cannot be partitioned into subsets. The set

H
24−1
IV

1 = {G0, G1, G2, G3, G4, G12, G13, G14} = G,

where the members of H24−1
IV

1 are given as follows. G0 : I = a1a2a3a4, G1 : a1 = a2a3a4, G2 : a2 = a1a3a4,
G3 : a3 = a1a2a4, G4 : a4 = a1a2a3, G12 : a1a2 = a3a4, G13 : a1a3 = a2a4 and G14 : a1a4 = a2a3.

Without loss of generality we omit the curly braces from the aliasing sets. The multiplication table for the
MA 24−1IV design is shown in Table 1.

Table 1: Multiplication table for the MA 24−1IV design

∗ G0 G1 G2 G3 G4 G12 G13 G14

G0 G0 G1 G2 G3 G4 G12 G13 G14

G1 G1 G0 G12 G13 G14 G2 G3 G4

G2 G2 G12 G0 G14 G13 G1 G4 G3

G3 G3 G13 G14 G0 G12 G4 G1 G2

G4 G4 G14 G13 G12 G0 G3 G2 G1

G12 G12 G2 G1 G4 G3 G0 G14 G13

G13 G13 G3 G4 G1 G2 G14 G0 G12

G14 G14 G4 G3 G2 G1 G13 G12 G0

In Example 3.2 and the subsequent ones, Ar is used to denote the r−th subset of the defining set Sk−q.
The subset Ar is constructed in such fashion that the intersection Ai ∩Aj = ∅ for i 6= j. In these subsequent
examples, it is possible to partition the defining sets. The sets are partitioned according to the number of
possible ways the identity relation can be obtained. The added aliased sets are generated to include the
main effects and factor interactions that would complete the multiplication table. The dash in the resulting
multiplication table is used to indicate operations which are undefined.

EXAMPLE 3.2 MA 25−2III design with B4 = {a4 : a4 = a1a2}, B5 = {a5 : a5 = a1a3}

The defining set for the MA 25−2III design is obtained as

S5−2 = {I = a1a2a4 = a1a3a5 = a2a3a4a5} .

The defining set, S5−2, is partitioned into two parts. The results emanating from the partitioning alongside
with the multiplication tables are presented as follows.

A. Let A1 = {I = a1a2a4 = a1a3a5}. Using the subset A1 ⊂ S5−2, we get

H
25−2
III

1 = {G0, G1, G2, G3, G4, G5, G23, G25} ⊂ G,

where G0 : I = a1a2a4 = a1a3a5, G1 : a1 = a2a4 = a3a5, G2 : a2 = a1a4 = a1a3a4a5,
G3 : a3 = a1a2a3a4 = a1a5, G4 : a4 = a1a2 = a1a3a4a5, G5 : a5 = a1a2a4a5 = a1a3,
G23 : a2a3 = a1a3a4 = a1a2a5 and G25 : a2a5 = a1a4a5 = a1a2a3.

The multiplication table for H25−2
III

1 is given in Table 2.
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Table 2: Multiplication table for the MA 25−2III design with I = a1a2a4 = a1a3a5

∗ G0 G1 G2 G3 G4 G5 G23 G25

G0 G0 G1 G2 G3 G4 G5 G23 G25

G1 G1 G0 G4 G5 G2 G3 – –
G2 G2 G4 G0 G23 G1 G25 G3 G5

G3 G3 G5 G23 G0 – G1 – –
G4 G4 G2 G1 – G0 – – –
G5 G5 G3 G25 G1 – G0 – –
G23 G23 – G3 – – – G0 –
G25 G25 – G5 – – – – G0

B. With A2 = {I = a2a3a4a5}, we get

H
25−2
III

2 = {G0, G1, G2, G3, G4, G5, G34, G45} ⊂ G,

where G0 : I = a2a3a4a5, G1 : a1 = a1a2a3a4a5, G2 : a2 = a3a4a5, G3 : a3 = a2a4a5,
G4 : a4 = a2a3a5, G5 : a5 = a2a3a4, G34 : a3a4 = a2a5 and G45 : a4a5 = a2a3.

Table 3 shows the multiplication that exists in the subset.

Table 3: Multiplication table for the MA 25−2III design with I = a2a3a4a5

∗ G0 G1 G2 G3 G4 G5 G34 G45

G0 G0 G1 G2 G3 G4 G5 G34 G45

G1 G1 G0 – – – – – –
G2 G2 – G0 G45 – G34 G5 G3

G3 G3 – G45 G0 G34 – G4 G2

G4 G4 – – G34 G0 G45 G3 G5

G5 G5 – G34 – G45 G0 G2 G4

G34 G34 – G5 G4 G3 G2 G0 –
G45 G45 – G3 G2 G5 G4 – G0

EXAMPLE 3.3 MA 26−3III design with B4 = {a4 : a4 = a1a2}, B5 = {a5 : a5 = a1a3}, B6 =
{a6 : a6 = a2a3}

In this case the defining set is

S6−3 = {I = a1a2a4 = a1a3a5 = a2a3a6 = a2a3a4a5 = a1a3a4a6 = a1a2a5a6 = a4a5a6} .

The defining relation, I, can be partitioned into three subsets, A1, A2, A3 as shown below together with its
corresponding multiplication tables.

A. With A1 = {I = a1a2a4 = a1a3a5 = a2a3a6}, we obtain

H
26−3
III

1 = {G0, G1, G2, G3, G4, G5, G6, G16} ⊂ G,

where G0 : I = a1a2a4 = a1a3a5 = a2a3a6, G1 : a1 = a2a4 = a3a5 = a1a2a3a6, G2 : a2 =
a1a4 = a1a2a3a5 = a3a6, G3 : a3 = a1a2a3a4 = a1a5 = a2a6, G4 : a4 = a1a2 = a1a3a4a5 =
a2a3a4a6, G5 : a5 = a1a2a4a5 = a1a3 = a2a3a5a6, G6 : a6 = a1a2a4a6 = a1a3a5a6 = a2a3 and
G16 : a1a6 = a2a4a6 = a3a5a6 = a1a2a3.

The multiplication is given in Table 4.
B. With A2 = {I = a2a3a4a5 = a1a3a4a6 = a1a2a5a6}, we have

H
26−3
III

2 = {G0, G1, G2, G3, G4, G5, G6, G25} ⊂ G,

http://www.srg-uniben.org/
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Table 4: Multiplication table for the MA 26−3III design with I = a1a2a4 = a1a3a5 = a2a3a6

∗ G0 G1 G2 G3 G4 G5 G6 G16

G0 G0 G1 G2 G3 G4 G5 G6 G16

G1 G1 G0 G4 G5 G2 G3 G16 G6

G2 G2 G4 G0 G6 G1 – G3 –
G3 G3 G5 G6 G0 – G1 G2 –
G4 G4 G2 G1 – G0 – – –
G5 G5 G3 – G1 – G0 – –
G6 G6 G16 G3 G2 – – G0 G1

G16 G16 G6 – – – – G1 G0

where G0 : I = a2a3a4a5 = a1a3a4a6 = a1a2a5a6, G1 : a1 = a1a2a3a4a5 = a3a4a6 = a2a5a6,
G2 : a2 = a3a4a5 = a1a2a3a4a6 = a1a5a6, G3 : a3 = a2a4a5 = a1a4a6 = a1a2a3a5a6,
G4 : a4 = a2a3a5 = a1a3a6 = a1a2a4a5a6, G5 : a5 = a2a3a4 = a1a3a4a5a6 = a1a2a6,
G6 : a6 = a2a3a4a5a6 = a1a3a4 = a1a2a5 and G25 : a2a5 = a3a4 = a1a2a3a4a5a6 = a1a6.

Table 5 shows the results of the operation Gu ∗Gv ∈ H
26−3
III

2 .

Table 5: Multiplication table for the MA 26−3III design with I = a2a3a4a5 = a1a3a4a6 = a1a2a5a6

∗ G0 G1 G2 G3 G4 G5 G6 G25

G0 G0 G1 G2 G3 G4 G5 G6 G25

G1 G1 G0 – – – – G25 G6

G2 G2 – G0 – – G25 – G5

G3 G3 – – G0 G25 – – G4

G4 G4 – – G25 G0 – – G3

G5 G5 – G25 – – G0 – G2

G6 G6 G25 – – – – G0 G1

G25 G25 G6 G5 G4 G3 G2 G1 G0

C. With A3 = {I = a4a5a6}, we get

H
26−3
III

3 = {G0, G1, G2, G3, G4, G5, G6, G14} ⊂ G,

where G0 : I = a4a5a6, G1 : a1 = a1a4a5a6, G2 : a2 = a2a4a5a6, G3 : a3 = a3a4a5a6,
G4 : a4 = a5a6, G5 : a5 = a4a6, G6 : a6 = a4a5 and G25 : a1a4 = a1a5a6.

The results of the multiplication is given in Table 6.

Table 6: Multiplication table for the MA 26−3III design with I = a4a5a6

∗ G0 G1 G2 G3 G4 G5 G6 G14

G0 G0 G1 G2 G3 G4 G5 G6 G14

G1 G1 G0 – – G14 – – –
G2 G2 – G0 – – – – –
G3 G3 – – G0 – – – –
G4 G4 G14 – – G0 G6 G5 –
G5 G5 – – – G6 G0 G4 –
G6 G6 – – – G5 G4 G0 –
G14 G14 – – – – – – G0

EXAMPLE 3.4 MA 27−4III design with B4 = {a4 : a4 = a1a2}, B5 = {a5 : a5 = a1a3}, B6 =
{a6 : a6 = a2a3}, B7 = {a7 : a7 = a1a2a3}
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The defining set for this design is

S7−4 = {I = a1a2a4 = a1a3a5 = a2a3a6 = a1a2a3a7 = a2a3a4a5 = a1a3a4a6 = a3a4a7 = a1a2a5a6 =

a2a5a7 = a1a6a7 = a4a5a6 = a1a4a5a7 = a2a4a6a7 = a3a5a6a7 = a1a2a3a4a5a6a7} .

The defining relation, I, can be partitioned into subsets as follows.

A. With A1 = {I = a1a2a4 = a1a3a5 = a2a3a6 = a1a2a3a7}, we have

H
27−4
III

1 = {G0, G1, G2, G3, G4, G5, G6, G7} ⊂ G,

where G0 : I = a1a2a4 = a1a3a5 = a2a3a6 = a1a2a3a7, G1 : a1 = a2a4 = a3a5 = a1a2a3a6 =
a2a3a7, G2 : a2 = a1a4 = a1a2a3a5 = a3a6 = a1a3a7, G3 : a3 = a1a2a3a4 = a1a5 = a2a6 =
a1a2a7, G4 : a4 = a1a2 = a1a3a4a5 = a2a3a4a6 = a1a2a3a4a7, G5 : a5 = a1a2a4a5 =
a1a3 = a2a3a5a6 = a1a2a3a5a7, G6 : a6 = a1a2a4a6 = a1a3a5a6 = a2a3 = a1a2a3a6a7 and
G7 : a7 = a1a2a4a7 = a1a3a5a7 = a2a3a6a7 = a1a2a3.

The results of the binary operation Gu ∗Gv ∈ H
27−4
III

1 are presented in Table 7.

Table 7: Multiplication table for the MA 27−4III design with I = a1a2a4 = a1a3a5 = a2a3a6 = a1a2a3a7

∗ G0 G1 G2 G3 G4 G5 G6 G7

G0 G0 G1 G2 G3 G4 G5 G6 G7

G1 G1 G0 G4 G5 G2 G3 – –
G2 G2 G4 G0 G6 G1 – G3 –
G3 G3 G5 G6 G0 – G1 G2 –
G4 G4 G2 G1 – G0 – – –
G5 G5 G3 – G1 – G0 – –
G6 G6 – G3 G2 – – G0 –
G7 G7 – – – – – – G0

B. With A2 = {I = a2a3a4a5 = a1a3a4a6 = a3a4a7 = a1a2a5a6 = a2a5a7 = a1a6a7}, we get

H
27−4
III

2 = {G0, G1, G2, G3, G4, G5, G6, G7} ⊂ G,

where G0 : I = a2a3a4a5 = a1a3a4a6 = a3a4a7 = a1a2a5a6 = a2a5a7 = a1a6a7, G1 :
a1 = a1a2a3a4a5 = a3a4a6 = a1a3a4a7 = a2a5a6 = a1a2a5a7 = a6a7, G2 : a2 = a3a4a5 =
a1a2a3a4a6 = a2a3a4a7 = a1a5a6 = a5a7 = a1a2a6a7, G3 : a3 = a2a4a5 = a1a4a6 = a4a7 =
a1a2a3a5a6 = a2a3a5a7 = a1a3a6a7, G4 : a4 = a2a3a5 = a1a3a6 = a3a7 = a1a2a4a5a6 =
a2a4a5a7 = a1a4a6a7, G5 : a5 = a2a3a4 = a1a3a4a5a6 = a3a4a5a7 = a1a2a6 = a2a7 =
a1a5a6a7, G6 : a6 = a2a3a4a5a6 = a1a3a4 = a3a4a6a7 = a1a2a5 = a2a5a6a7 = a1a7 and
G7 : a7 = a2a3a4a5a7 = a1a3a4a6a7 = a3a4 = a1a2a5a6a7 = a2a5 = a1a6.

The multiplication results are presented in Table 8.
C. With A3 = {I = a4a5a6 = a1a4a5a7 = a2a4a6a7 = a3a5a6a7}, we obtain

H
27−4
III

3 = {G0, G1, G2, G3, G4, G5, G6, G7} ⊂ G,

where G0 : I = a4a5a6 = a1a4a5a7 = a2a4a6a7 = a3a5a6a7, G1 : a1 = a1a4a5a6 = a4a5a7 =
a1a2a4a6a7 = a1a3a5a6a7, G2 : a2 = a2a4a5a6 = a1a2a4a5a7 = a4a6a7 = a2a3a5a6a7,
G3 : a3 = a3a4a5a6 = a1a3a4a5a7 = a2a3a4a6a7 = a5a6a7, G4 : a4 = a5a6 = a1a5a7 =
a2a6a7 = a3a4a5a6a7, G5 : a5 = a4a6 = a1a4a7 = a2a4a5a6a7 = a3a6a7, G6 : a6 = a4a5 =
a1a4a5a6a7 = a2a4a7 = a3a5a7 and G7 : a7 = a4a5a6a7 = a1a4a5 = a2a4a6 = a3a5a6.

Table 9 contains the results of the binary operation Gu ∗Gv ∈ H
27−4
III

3 .
D. With A4 = {I = a1a2a3a4a5a6a7}, we get

H
27−4
III

4 = {G0, G1, G2, G3, G4, G5, G6, G7} ⊂ G,
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Table 8: Multiplication table for the MA 27−4III design with I = a2a3a4a5 = a1a3a4a6 = a3a4a7 =
a1a2a5a6 = a2a5a7 = a1a6a7

∗ G0 G1 G2 G3 G4 G5 G6 G7

G0 G0 G1 G2 G3 G4 G5 G6 G7

G1 G1 G0 – – – – G7 G6

G2 G2 – G0 – – G7 – G5

G3 G3 – – G0 G7 – – G4

G4 G4 – – G7 G0 – – G3

G5 G5 – G7 – – G0 – G2

G6 G6 G7 – – – – G0 G1

G7 G7 G6 G5 G4 G3 G2 G1 G0

Table 9: Multiplication table for the MA 27−4III design with I = a4a5a6 = a1a4a5a7 = a2a4a6a7 = a3a5a6a7

∗ G0 G1 G2 G3 G4 G5 G6 G7

G0 G0 G1 G2 G3 G4 G5 G6 G7

G1 G1 G0 – – – – – –
G2 G2 – G0 – – – – –
G3 G3 – – G0 – – – –
G4 G4 – – – G0 G6 G5 –
G5 G5 – – – G6 G0 G4 –
G6 G6 – – – G5 G4 G0 –
G7 G7 – – – – – – G0

where G0 : I = a1a2a3a4a5a6a7, G1 : a1 = a2a3a4a5a6a7, G2 : a2 = a1a3a4a5a6a7, G3 : a3 =
a1a2a4a5a6a7, G4 : a4 = a1a2a3a5a6a7, G5 : a5 = a1a2a3a4a6a7, G6 : a6 = a1a2a3a4a5a7 and
G7 : a7 = a1a2a3a4a5a6.

Table 10 includes the results of the binary operation Gu ∗Gv ∈ H
27−4
III

4 for this subset.

Table 10: Multiplication table for the MA 27−4III design with I = a1a2a3a4a5a6a7

∗ G0 G1 G2 G3 G4 G5 G6 G7

G0 G0 G1 G2 G3 G4 G5 G6 G7

G1 G1 G0 – – – – – –
G2 G2 – G0 – – – – –
G3 G3 – – G0 – – – –
G4 G4 – – – G0 – – –
G5 G5 – – – – G0 – –
G6 G6 – – – – – G0 –
G7 G7 – – – – – – G0

The results of the analysis of the partitioned aliasing subsets of the MA 2k−q design with k − q = 3 have
led to several conclusions. It is clear that with q = 1, the defining relation cannot be partitioned into any other
aliasing subset and that the multiplication table for q = 1 is that of the Abelian group, G. Suppose that q > 1.
Then it is sufficient to show that the property of closure does not hold for the aliasing subsets Gu in H

2k−q
R

i ,

which is derived from Ai. From the multiplication tables (Table 2 – 10) for the aliasing subsets Gu in H
2k−q
R

i

that have been generated, it appears that some of the binary operations Gu ∗Gv are undefined in H
2k−q
R

i . This

is so because some of the elements Gu ∗ Gv do not give an equivalent aliasing subset in H
2k−q
R

i . As shown

in Table 2 with Sk−q\ {a2a3a4a5} as the identity relation for the MA 25−2III design, G3, G4 ∈ H
25−2
III

1 , but

G3 ∗G4 /∈ H
25−2
III

1 . Once more, for G1, G23 ∈ H
25−2
III

1 , G3 ∗G4 : a1a2a3 = a3a4 = a2a5. There is no aliased

subsets in H
25−2
III

1 which contains a3a4; hence G1 ∗ G23 /∈ H
25−2
III

1 . However, the union H
25−2
III

1 ∪ H
25−2
III

2 of
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the MA 25−2III design forms an Abelian group, which is G. Similar results hold for MA 26−3III and MA 27−4III ,
respectively.

The multiplication tables also show that the union
⋃q

i=1,i 6=l H
2k−q
R

i with q > 1 for some l does not form a

subgroup for the MA 2k−qR designs, whenever each of the subsets in H
2k−q
R

i contains the aliased subsets, Gu,
u ≥ 1, wherein a single factor or two factor interactions are aliased with other two factor interactions. How-
ever,

⋃4
i=1,i 6=4H

27−4
III

i is a subgroup for the MA 27−4III design because the aliased subsets in H
27−4
III

4 contains
the aliased subsets Gu, where all the single factors are aliased with the six factor interactions. Hence, the
partitioned aliasing subsets of the group, which are constructed according to the number of possible ways
the identity relation of the MA 2k−qR designs with k − q = 3 can be obtained, are not subgroups.

4. Conclusion

The work presented in this paper has been centred on the algebraic aspects of the eight-run fractional factorial
designs constructed using design generators that define q added columns in terms of interactions of the k− q
basic columns, where the factorial effect columns are indistinguishable from their aliases. It is demonstrated
that the aliasing sets together with the defining relation of the eight-run MA 2k−q fractional factorial designs
have the following algebraic properties:

– It is a finite Abelian (or commutative) p−group with p = 2.
– It is not cyclic.
– The partitioned sets, which are constructed according to the ways the identity relation can be ob-

tained, are not subgroups.
– The word length function m of an aliasing set is not a homomorphism.
– The group formed by the aliasing sets and the set of integer modulo k + 1 based on the mapping

m : G→ Zk+1 are not isomorphic.

It is worthwhile to extend the obtained results in this study to other regular MA 2k−q fractional factorials
with higher runs and to verify whether similar results hold for non-regular 2k−q factorial designs.

Acknowledgement

The author is grateful to the anonymous referees for their valuable suggestions the incorporation of which
has enhanced the presentation and ideas of the present paper.

References

Alhelali, M. H., Georgiou, S. D. and Stylianou, S. (2020). Screening designs based on weighing ma-
trices with added two-level categorical factors. Journal of Quality Technology, 52(2): 168 – 181.
https://doi.org/10.1080/00224065.2019.1571341

Bailey, R. A. (1985). Factorial design and Abelian groups. Linear Algebra and its Applications, 70: 349 – 368.

Bate, S. T. and Chatfield, M. J. (2016a). Identifying the structure of the experimental design. Journal of Quality
Technology, 48(4): 343 – 364. https://doi.org/10.1080/00224065.2016.11918173

Bate, S. T. and Chatfield, M. J. (2016b). Using the structure of the experimental design and the
randomization to construct a mixed model. Journal of Quality Technology, 48(4): 365 – 387.
https://doi.org/10.1080/00224065.2016.11918174

Chen, J. (1998). Intelligent search for 213−6 and 214−7 minimum aberration designs. Statistica Sinica, 8: 1265 – 1270.
Chen, H. and Hedayat, A.S. (1998). Some recent advances in minimum aberration designs. Lecture Notes – Mono-

graph Series: New Developments and Applications in Experimental Design, 34, 186 – 198.
Cheng, C.-S. and Mukerjee, R. (1998). Regular fractional factorial designs with minimum aberration and maximum

estimation capacity. Annals of Statistics, 26: 2289 – 2300.
Ekhosuehi, V. U., Iruegbukpe, D. O. and Mbegbu, J. I. (2018). The minimum aberration criterion for screening exper-

iments at two levels from an entropy-based perspective. Communications in Statistics – Theory and Methods,
47(8): 1868 – 1881.

Fries, A. and Hunter, W.G. (1980). Minimum aberration 2k−p designs. Technometrics, 22: 601 – 608.
Georgiou, S. D., Stylianou, S. and Aggarwal, M. (2014). Efficient three-level screening designs using

http://www.srg-uniben.org/



11 Ekhosuehi

weighing matrices. Statistics: A Journal of Theoretical and Applied Statistics, 48(4): 815 – 833.
https://doi.org/10.1080/02331888.2012.760097

Herstein, I.N. (1975). Topics in Algebra (2nd ed.). New York: John Wiley & Son.
Hu, J. and Zhang, R. (2009). Maximal rank minimum aberration and doubling. Statistics and Probability Letters, 79:

915 – 919.
Liao, C.-T. and Chai, F.-S. (2009). Design and analysis of two-level factorial experiments with partial replication.

Technometrics, 51: 66 – 74.
Mee, R.W. (2009). A comprehensive guide to factorial two-level experimentation. New York: Springer Science.
Montgomery, D. C. and Jennings, C. L. (2006). An overview of industrial screening experiments. In: A. Dean and S.

Lewis (eds), Screening. Springer, New York. https://doi.org/10.1007/0-387-28014-6 1.
Olsen, R., Lawson, J., Rohbock, N. and Woodfield, B. (2016). Practical comparison of traditional and definitive screen-

ing designs in chemical process development. International Journal of Experimental Design and Process Op-
timisation, 5(1/2): 1 – 22.

Pistone, G., Riccomagno, E. and Rogantin, M. P. (2009). Methods in algebraic statistics for the design of exper-
iments. In: L. Pronzato and A. Zhigljavsky (eds), Optimal Design and Related Areas in Optimization and
Statistics. Springer Optimization and Its Applications, 28. Springer, New York. https://doi.org/10.1007/978-0-
387-79936-0 5.

Santamaria, J. L., Valentin, V. and Huerta, G. (2019). Quantifying the effect of construction site factors on concrete
compressive strength using designed experiments. International Journal of Experimental Design and Process
Optimisation, 6(1): 26 – 49. doi: 10.1504/IJEDPO.2019.097466

Tang, B. and Wu, C.F.J. (1996). Characterization of minimum aberration 2n−k designs in terms of their complementary
designs. Annals of Statistics, 24: 2549 – 2559.

Vicente, G., Coteron, A., Martinez, M. and Aracil, J. (1998). Application of the factorial design of experiments and
response surface methodology to optimise biodiesel production. Industrial Crops and Products, 8: 29 – 35.

Wu, C.F.J. and Hamada, M. (2000). Experiments: Planning, analysis and parameter design optimization. New York:
Wiley.

http://www.srg-uniben.org/


