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1. Introduction

Prior to the development of prediction equations involving important variables and the optimal process op-
erating conditions of a system, a screening design is usually completed. The screening design, which is the
initial stage of many industrial experiments and process development, is used to determine efficiently and
effectively a small number of potential factors among a large number of factors that may affect a particular
response (Georgiou et al., 2014; Alhelali et al., 2020). Traditional screening designs, such as the two-level
fractional factorial designs, are commonly used to achieve this purpose after one set of experiment (Olsen
et al., 2016). The designs are intended to find significant main effects, rather than interaction effects (cf.
Montgomery and Jennings, 2006). This is unlike experiments based on full factorial designs, where all fac-
tors and their interactions are investigated (for instance, in Santamaria et al. (2019), a full 2° factorial design
was conducted to quantify the effects of five construction site factors including crew experience, compaction
method, mixing time, curing humidity and curing temperature).

Let 257 be a regular fractional factorial design at two levels with & factors and 29 runs constructed by
choosing ¢ > 0 independent fractional generators from the set of all factorial effects in the 2¥ factorial layout.
The integer q is the degree of fractionation. This kind of experiment is well known in the literature (Vincente
et al., 1998; Wu and Hamada, 2000) and it has several economic benefits to the experimenter (Mee, 2009).
The run size economy of the fractional factorial design results to aliasing effects. The aliasing effect is used
to describe factorial effects whose estimates are indistinguishable. The ¢ independent fractional generators
may be chosen in different ways. As a consequence distinct sets of fractional generators may give distinct
sets of designs. To select the 'best’ design, certain criteria are used, for instance, the resolution and the
minimum aberration (Mee, 2009; Wu and Hamada, 2000). Most researchers rely on the minimum aberration
(MA) criterion as it can discriminate among designs of the same resolution. There are a number of papers in
the literature, which discuss the concept and the practical use of the MA criterion in screening experiments.
For details refer to Fries and Hunter (1980), Tang and Wu (1996), Chen and Hedayat (1998), Cheng and
Mukerjee (1998), Hu and Zhang (2009) and Ekhosuehi et al. (2018).

Perhaps the MA 2F fractional factorial designs are the most commonly used designs in screening ex-
periments. The aliased sets from such designs together with the defining relation form an Abelian group
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with multiplication being the corresponding column summation mod 2 (Chen, 1998; Liao and Chai, 2009).
In spite of the statistical overtones on the successes that MA 2¥~4 fractional factorial designs have had in
screening experiments, it is important to know whether there are other algebraic properties of the design
criterion. This study focuses on the theoretic aspects of the 29 design. The applied aspects of the design
can be found elsewhere (Montgomery and Jennings, 2006; Olsen et al., 2016). The theoretical underpinning
of this study is hinged on the theory of finite Albelian groups. For a discussion on this theory and other
algebraic statistics in design of experiments refer to Pistone et al. (2009).

This paper is written to assist in answering questions on MA 2¥~¢ fractional factorial designs of the fol-
lowing sort: (i) Is the group formed by the aliasing sets cyclic? (ii) Is it possible to find a subgroup from
the partitioned subsets of the defining relation? (iii) Can we define a homomorphism using the word length?
These questions on the structure of MA 2¥~9 designs, which are used in screening experiments, are cru-
cial in experimental design. As earlier mentioned in Bate and Chatfield (2016a), modern statistical software
packages allow the non-statisticians to perform experimental design without correctly identifying the un-
derlying structure of the experimental design and this can lead to incorrect model selection and misleading
inferences. In another study, Bate and Chatfield (2016b) provided a practical situation where the structure of
an experimental design coupled with randomisation was used in the construction of mixed model statistical
analysis. Regardless of this practical problem, the algebraic structure of factorial designs sums up a prob-
lem in the literature (Bailey, 1985). Bailey (1985) had attempted this problem by using the theory of finite
Abelian groups to simplify the search for and construction of factorial designs. However, the study restricted
attention to designs with group homomorphism.

This study is aimed at describing the features of the eight-run MA 2¥~9 fractional factorial designs from
an algebraic perspective. It is important to mention here that several higher runs 2¥~¢ designs are available
in the literature. For example, the screening experiment on the process of synthesising TiOs in the laboratory
was carried out in Olsen et al. (2016) with a 16-run 2}?;6 fractional factorial design. This study is restricted
to the 8-run MA 25~ fractional factorial designs for convenience. Even so, the obtained results herein can
be extended to other higher runs two-level fractional factorial designs.

To avoid confusion in the main part of this paper and make the paper clearer to a larger audience, the
following definitions are given (Herstein, 1975).

DEFINITION 1.1 A nonempty set of elements G is said to form a group if in G there is defined a binary
operation, called the product and denoted by *, such that

i. a,b € G impliesthat axb € G (closed)
ii. a,b,c € G impliesthat a * (bx*c) = (axb) * c (associative law)
iii. There exists an element e € G such that a x e = e x a = a for all a € G (the existence of an identity
element in G)
iv. Forevery a € G, there exists an element o' € G such that a x a=! = a=! * a = e (the existence of
inverses in G).

DEFINITION 1.2 A group G is said to be Abelian (or commutative) if for every a,b € G, a * b = b x a.

DEFINITION 1.3 The order of a group G, denoted by |G
then G is said to be a finite group.

, IS the number of elements it contains. If |G| < oo,

DEFINITION 1.4 [If G is a group and a € G, the order (or period) of a is the least positive integer m such
that o™ = e. If no such integer exists, we say that a is of infinite order.

DEFINITION 1.5 Let G be a group and p a prime. A group of order p" for some n. > 0 is called a p—group.

DEFINITION 1.6 A mapping f from a group G into a group G' is called a homomorphism if, for every
a,b € G, f(ab) = f(a)f(b). In addition, if f is one-to-one and onto, then f is called an isomorphism, and
G and G’ are said to be isomorphic.

Unless otherwise explained, all terminologies and notations used in this paper are consistent with that of
Herstein (1975) and the experimental design literature (cf. Wu and Hamada, 2000).
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3 Ekhosuehi
2. Materials and method

This section contains the proof of the algebraic properties of the eight-run MA 2*~¢ fractional factorial
designs mentioned in the Introduction. In addition, a list of the members in the class of eight-run 2¥~9
fractional factorials is provided and an expression for the binary product between any two aliased sets of the
group in terms of the defining words is given.

Let A={a;:1=1,2,---,k} represent the set of factor labels (or letters) for the k factors. We consider a
special kind of set where the equality sign may as well be used to list the elements. The equality sign is used
to indicate aliases, that is, the factor effects that cannot be estimated independently. Let I denote the identity
element of the MA 2F~7 fractional factorial design. Then the defining relation of the form I = ajasaqy =
ajazas = agasagas is the set {I, ajasaq, ajasas, asasasas}. The elements of the set of defining relation
are called words and the number of factors in each word is the word length. The aliasing sets are derived
from the defining relation. In this paper, the notation (,,, where v is a positive integer, is used to denote the
aliasing sets.

Let B; = {aj taj = HT# ar, ar € A} be the defining word of a defining contrast subgroup of word
length m; = ‘HT# a,«‘,j =k—q+1,k—q+2,--- k. The set U;?:k_qﬂ B;, such that ﬂ?:k_qﬂ Bj =0,is
called the set of design generators. The number of words in the set of design generators is g. For the ¢ defining

words, the total number of identity relations is expressed as > ¢_; <z> The product of a defining word

with itself gives an identity, I, thatis, I = a; H#j ar, a, € A.Equating these identities gives the defining
relation. The defining relation is also called the defining contrast subgroup. The defining contrast subgroup
may be partitioned according to the number of possible ways the identity relation can be obtained. Let Sy,
be the defining set, that is, the set of all possible combinations of the defining words in U?:k— g+1 Bj that
would give the identity relation, I, for the fractional factorial with & — ¢ main factors. This set, Sj_,, uniquely
determines a regular fractional factorial design.

Let d denote the regular 2°~9 fractional factorial design. From the defining set, Si—q» the word length
pattern of the design is determined. The word length pattern of the design, d, is a vector W(d) =
(As(d), A4(d),--- , Ar(d)), where A, (d) is the number of words of length r in S;_, with Zf:s Ar(d) =

3:1 (g) (Chen, 1998). The summand (g = #ir)! corresponds to the subtotal of the words of length
7 in Si_g4. The resolution of the design d is the smallest r satisfying A,.(d) > 1. The design d is said to have
minimum aberration if it has the minimum number of words in Sj,_, among other designs (Fries and Hunter,
1980).

Let G be a group formed by the aliasing sets, GG, together with the identity element, represented as Gy,
of the MA 254 fractional factorial design. That is, the aliasing sets, GG,,, and the identity element, G, are
elements of GG. The identity element, Gy, is the defining relation from which the other elements of G are
derived. Let (G, G,) be the number of letters common to the maximum length of the defining words of
the aliased sets G, G, € G, and such that p(G,, G,) = m(G,) and ¢(G,, Go) = 0. The notation m(G,,)
denotes the maximum length of the defining word of the aliased set GG,,. Using these notations and symbols,
the following propositions are stated with their proofs.

PROPOSITION 2.1 The group G formed by the aliasing sets together with the identity relation of the MA
2k=4 fractional factorial design is a non-cyclic, finite Abelian p—group.

Proof. For every MA 24 fractional factorial design, there are 29 — 1 columns generated by the k — ¢
independent columns. These 2¥~9 — 1 columns comprise of factorial effects that are aliased. The 2¥~9 — 1
aliased sets together with the defining relation I form a group G and the order of the group is |G| = 2¥79.
Since 2 is a prime number with k — ¢ > 0, the group G is a p—group. Moreover, 2¥~9 < oo implies that G
is a finite group. For each element G, € G, G, * G,, = Limplies that |G,,| = 2 and that the generating set of
G, is {I, G, }. Since every element of G has order 2, none of the elements of G generates G. Thus, G is not
cyclic. For all G, G, € G, G, # G, Gy, * G, € G (by the property of closure). Since every element of G
has order 2, (G, * Gy) * (G4, * G,) = L. Multiplying from the left hand side by GG, and from the right hand
side by Gy, Gy * (Gy * Gy) x (G x Gy) * Gy, = Gy, * G,,. By the property of associativity, the operation is
the same as (G, * Gy) * Gy, * Gy * (G, * Gy) = G, * G, which simplifies to G, x G,, = G, * G,,. Hence,
G is Abelian. [ ]
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PROPOSITION 2.2 Let Zy11 = {0,1,2,--- |k} be a set of integer modulo k + 1. The mapping m : G —
Zi+1, where m is the maximum length of the defining word of an aliased set in G, is not a homomorphism,
and hence G and Zy1 are not isomorphic.

Proof. Consider the aliased sets G, G, € G, u # v. Suppose we count the words of the maximum length
of the defining words in G, and then count the one in G,. Then every letter common to both G, and G,
would have been counted twice. Since G, * G, is another element in G with all the letters either in G,, or
G, but not both (as a; * a; = I, a; € A), then every letter common to the maximum length of the defining
words of the aliased sets G, and G, should be deleted in G,, * G,,. Hence, the binary product of any two
aliased sets G, G, € G, u # v, in terms of the function m is given as

m(Gy *x Gy) = m(Gy) + m(Gy) — 20(Gy, Gy) # m(Gy)m(Gy).
Moreover, for u = v, G, * G, = G so that
m(Go) = m(Gy x Gy) = m(Gy) + m(Gy) — 20(Gy, Gy) =0

as ¢(Gy,Gy) = m(Gy). For G, # Go, m(Gy * Gy) # m(Gy)m(Gy). Similarly, m(G, * Go) #
m(G,)m(Gop). Hence m is not a homomorphism. Since m is not a homomorphism, then G and Z; are not
isomorphic. [ |

PROPOSITION 2.3 For the 2~ fractional factorial designs withk —q =3, k < 7and 0 < q < 4.

Proof. For a fractional factorial design to exist, the degree of fractionation ¢ must be a positive integer. So
q > 0. For the k£ — ¢ main factors, the number of possible interactions may be 2, 3, - -- , or £ — g, so that the

possible number of ways in which the design generators can be constructed are (k g q> , <k ; 1 ) , oo or

(g : Z) . The total number of possible ways is Z’:;g (fj : (11 , which is an upper bound for the degree of

fractionation, ¢, that is,

Withk —q¢=3,q¢ < 4.Hence, k <7and 0 < ¢ < 4. [ |

3. Illustrative examples

In this section it is shown by examples that the partitioned aliasing subsets of the MA 2¢~¢ design with
k — ¢ = 3, which are constructed according to the number of possible ways the identity relation can be
obtained, are not subgroups. It is convenient to describe the MA 2¥~9 designs with k — ¢ = 3 by considering
the multiplication tables for the designs. From Proposition 2.3, the list of members in the class of eight-run
regular 279 design are 2471, 2572, 26=3 and 274, Using the MA criterion, it can be verified that the MA
2k—4 designs with k — ¢ = 3 are:

(1) The MA 2?;1 design with By = {a4 : a4 = ajagas},
(2) The MA 2?1_12 design with By = {a4 : ay = ajas2}, Bs = {a5 : a5 = a1a3},

(3) The MA 2?1_13 design with By = {as:a4=aa2}, Bs = {as:a5=aias}, Bg =
{CLG L Qg — a2a3},
(4) The MA 2;1_14 design with By = {as:a4=aas}, Bs = {as:a5=aias}, Bg =

{CLG L ag = agag}, B7 = {a7 Lar = a1a2a3},
where the subscript in the MA 2%~ fractional factorials denotes the resolution of the design.

k—gq
Let HZ2 " C @ be the partitioned aliasing sets of an MA 2¥~¢ design with k£ — ¢ = 3 and resolution R
k—q
for the decomposition index i. This study examines the binary operation between any two elements in H 3 "
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5 Ekhosuehi

for each class of MA 2¥~4 design with k — ¢ = 3 and constructs multiplication tables for the outcomes. The
idea behind the multiplication is based on ensuring that all the factor interactions in G, * GG, are contained

. ok-a
in H; ®

EXAMPLE 3.1 MA 2?;1 design with By = {a4 : a4 = ajazas}

The defining set for the MA 2‘}‘71 design is given as
Si—1 ={I = ajazazay} .

Apparently, the defining relation, I, cannot be partitioned into subsets. The set
2471
H"Y ={Go,G1,G2,G3,G4,G12,G13,Gia} = G,

where the members ofoﬁV1 are given as follows. Gy : I = ajaqasaq, G1 : a1 = asaszaq, Go : as = ajasay,
G3 a3 = ajasay, G4 a4 = ajasas, G12 L aijag = azay, G13 L ajaz = agay and G14 s ajaq4 = a20as.

Without loss of generality we omit the curly braces from the aliasing sets. The multiplication table for the
MA 2?;1 design is shown in Table 1.

Table 1: Multiplication table for the MA 2}1‘71 design

* | Go | G1 | G2 | G3 | Gy | G2 | G13 | G1s
Go | Go | G1 | Go | Gg | Gy | G12 | G13 | Gua
G1 | G1 | Go | G2 | Gi3 | Guu | Go | G3 | Gy
Gy | Go | Gia | Go | Guu | Giz | G1 | Gy | G3
Gs | G3 | Gi3 | Gy | Go | Gia | Gy | G1 | G2
Gy | Gy | Gy | Gz | Gia | Go | Gz | Go | Gy
Gi2 | G2 | G2 | G1 | Gy | G3 | Go | Gia | Gi3
Gi3 |Gz | G3 | Gy | G1 | G2 | Gis | Go | G2
Guu |Gu | Gy | G3 | Go2 | G | Gi3 | G12 | Go

In Example 3.2 and the subsequent ones, A, is used to denote the r—th subset of the defining set S;_,.
The subset A, is constructed in such fashion that the intersection A; N A; = () for i # j. In these subsequent
examples, it is possible to partition the defining sets. The sets are partitioned according to the number of
possible ways the identity relation can be obtained. The added aliased sets are generated to include the
main effects and factor interactions that would complete the multiplication table. The dash in the resulting
multiplication table is used to indicate operations which are undefined.

EXAMPLE 3.2 MA 2?1_12 design with By = {ay4 : a4y = a1as}, Bs = {a5 : a5 = ajas}

The defining set for the MA 2?;12 design is obtained as
55_2 = {I = aijazaq = aijazas = a2a3a4a5} .

The defining set, S5_2, is partitioned into two parts. The results emanating from the partitioning alongside
with the multiplication tables are presented as follows.

A. Let Ay = {I = ajazaq = ajasas}. Using the subset A; C S5_o, we get

leli — {G07G1’G2,G37G4,G57G235 G25} C G7

where Go I = aijasaqs = ajasas, G1 . a1 = aga4 = asas, G2 LAy = ajaq4 = aijasaqas,
Gs3 : a3 = ajasazay = ajas, G4 : ag = ajas = ajasaqas, Gs : a5 = ajasagsas; = ajas,
G23 . a2a3 = a1a3a4 = a10a2a5 a?gG25 . ag205 = a10405 = a102a3.

The multiplication table for H 12 T is given in Table 2.

http://www.srg-uniben.org/



Eight-run minimum aberration two-level fractional factorial designs ...

Table 2: Multiplication table for the MA 2?1_12 design with I = ajasa4 = ajasas

¥ | Go |G1 | Go | G3 | Gs| G5 | Gag | Gos
Go | Go |G1 | Ga | G3 | Gy | G5 | Gaz | Gas
Gi | Gi |Gy | Gy | G5 | Go2 | Gg | — —
Go | G2 |Gy | Go | Gz | G1 | Gas | G3 | G5

Gs | G3 | G5 | Gas | Go | — | G1 | — -
Gy | Gy | Gy | Gy - | Go| - — -
Gs | G5 | G3 | Gas | Gy | — | Go | — —
Gog | Gog | — | G3 | - - - | Go | -
Gos | Gos | — | G5 | — - - - | Go

B. With Ay = {I = a2a3a4a5}, we get

Hg??ﬁ ={Go,G1,G2,G3,G4,G5,G34,Gy5} C G,

where Gy : I = asasagas, G : a1 = ajasasagas, Go : as = asagas, Gz : az3 = asagas,
G4 : aqg = asasas, G5 : a5 = asasay, Gy : agas = asas and Gys : agas = asas.
Table 3 shows the multiplication that exists in the subset.
Table 3: Multiplication table for the MA 2?;12 design with I = agaszaqas
¥ | Go |G1| Go | G3 | Gy | G5 | G3g | Gys
Go | Go |G1| Go | G3 | Gy | G5 | G3q4 | Gygs
Gi1 | Gi |Go| - - - - - -
Gy | Go | — | Go | Gas | — |Gy | G5 | G3
Gs | G3 | — |Gus | Go | Gaa | = | Gy | Ga
Gy | Gy | = | = |G| Go | Gys | G | G5
Gs | G5 | — |G| — |Gy | Go | Ga | Gy
G34 |Gy | — | G5 | Gy | G3 | Ga | Go | —
Gys | Gas | — | G3 | G2 | G5 | G4 | - | Gy
EXAMPLE 3.3 MA 2?]_13 design with By = {a4:a4 =ajas}, Bs = {as:a5 =ajas}, Bg =

{ag : ag = agas}

In this case the defining set is

Se_3 = {I = a1a2a4 = 104305 = A2a30 = A2030405 = 11030406 = A1020506 = a4a5a6} .

The defining relation, I, can be partitioned into three subsets, A1, As, A3 as shown below together with its

corresponding multiplication tables.

A. With 4, = {I = 10204 = Q10305 = agagaﬁ}, we obtain

Hf??f’ = {Go, G1,G2,G3,Gy4,G5,G6, G} C G,

where G : I = ajasas = aiasas = asasag, G : a1 = asay = azas = ajasasag, Go : ag =
aja4 = aijazasas = azae, Gg . a3 = ajasaszaqs = ajas = a20¢, G4 . a4 = ajay = ajasaqas =
a2a3a40a¢, G5 . a5 = ajasa4as = a1a3 = aga30a50a¢, G6 g = a1a9a406 = A1030506 = A20a3 and

G16 1 a106 = 20406 = a3045046 — a10203.
The multiplication is given in Table 4.
B. With Ay = {I = asazaqas = ajaszasas = ajazasag}, we have

H221;I — {GO,Gl,G27G37G4’G5’G6’G25} C Ga
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Table 4: Multiplication table for the MA 2?1_13 design with I = ajasa4 = ajasas = asasag

x | Go | G1 | G2 | G3 | Gy | G5 | Gg | Gig
Go | Go | G1 | G2 | G3 | Gy | G5 | Gg | G
G1 | Gi | Go |Gy | G5 | Ga | G3 | Gig | Gs
Go | Go | Gy | Go | Ge |Gr| — | G3 | -
Gs | G3 | G5 |Ge | Go | — | G1 | Go | -
Gy | Gy | Go |G| — | Gy | — - -
Gs | G5 | G3 | — |G1| = | Go| — -
Ge | Go¢ | Gig | Gs |Ga| — | = | Go | Gy
Gig |G | Go | — | — | = | - | G1 | Go

where Go I = a2a3a4a5 = A1a30406 — A1020506, Gl © a1 = ajazazaqas = aza4ae — A20506,

G2 . g — asaqar = ajazazaqae — aiasde, Gg L a3z = aza4ar — ajaqae — ajasasasag,

G4 . a4 = agasa; — ajazag — aijasaqasag, G5 . as = agasaq4 — ajazaqasag — aiazae,

Gg : ag = asagagasag = arazay = ajasas and Gos @ asas = aza4 = 10203040506 = G106.
Table 5 shows the results of the operation G, * G,, € H22 ?;’3.

Table 5: Multiplication table for the MA 2?1713 design with I = asasaqas = ajasasas = ajasasag

x | Go | G | G2 | G3 | Gy | G5 | Gg | Gos
Go | Go | G1 | Go | G3g | Gy | G5 | Gg | Gas
Gi | Gy | Go | - - - - | Gy | Gg
Gy | Go | — | Go | - - |Gy | - | G5
Gs | G3 | - - | Go | Gos | — - | Gy
Gy | Gy | - - |Gy | Go | - - | Gs
Gs | G5 | — | Ga | — - | Go | - | G
Ge | Go | Gos | — - - - | Go | Gy

Gos | Gos | Gg | G5 | Gy | Gz | Ga | G1 | Gy

C. With A3 = {I = aqasas}, we get

963
H3IH - {G()’ G17 G27 G37 G47 G57 G67 G14} C G7

where G() I = aqa50a6, G1 Layp = aijaqasag, G2 L a2 = aga4as504, G3 . a3 = asaqasag,

G4 a4 = asaeg, G5 a5 = a40¢, G6 LA = Q405 and G25 L aja4 = a1a506.

The results of the multiplication is given in Table 6.

Table 6: Multiplication table for the MA 2?;[3 design with I = a4asag

* | Go | G1 |Gy | G3 | Gy | G5 | Gg | Gy
Go | Go | G1 | G2 | G3 | Gy | G5 | Gg | Gy
G G1 Go - - | Guu | - _ _
G [ G| = [Gol = = [ = =<
Gs [Gs | = [ - [Go| = [ - [ -1~
Gy | Gy |Guu| — | = | Go | Gs | Gs | —
Gs | Gs | - | - | - [ Gs |Go|Ga| -
Go | Ge | - | - | - | Gs | Ga|Go| -
Guu |Gu| - | -] -] - | -1-16Go
EXAMPLE 3.4 MA 2;;14 design with By = {a4 ta4 = a1a2}, B = {a5 tay = alag}, Bg =

{ag : ag = agas}, B7 = {a7 : a7 = ajazas}
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The defining set for this design is
Sr_4 = {I = a10204 = 010305 = 020306 = 11020307 = (2030405 = A1030406 = A30407 = A1020506 =

az2a5a7 = a10ga7 = 40506 — A1040507 = A2Q40607 — A3A506A7 = a1a2a3a4a5a6a7} .
The defining relation, I, can be partitioned into subsets as follows.

A. With 4 = {I = aja2a4 = a1a3as = asazas = ajazasaz}, we have

H12§?14 = {Go, G1,G2,G3,Gy, G5, G, G} C G,

where G(] 1= ajaza4 = 10305 = A20a30¢ — aijazazary, Gl a1 = aga4 = aszay = ajaz20a3ag =
asasarg, G2 L a2 = aja4 = ajazazas = azade = ajasary, Gg L a3 = ajagazaqs = a1a5 = a206 =
ajasarg, G4 a4 = ajaz = ajasaqas = agaszaqaeg — a1azasaqavy, G5 . a5 = ajazaqas =
ajas3 = az20a3a506 = ajasazasar, G6 L g = ajaga40de — a103a506 — a203 — a10a9a306a7 and
G7 L a7 = ajazaqar = ajasasayr = a2a3a607 — algggg.

The results of the binary operation G, * G, € H 12 1 are presented in Table 7.

Table 7: Multiplication table for the MA 25;14 design with I = ajasa4 = a1a3a5 = asasag = ajazasay

x | Gog | Gh | Gy | G3 | G4 | Gs | Gg | Gr
Go | Go | G1 | Go | G3 | Gy | G5 | Gs | Gr
G1|G1 |Gy |Gy |Gs | Go |G| — | —
Go | Go |Gy |Gy | Gs | G1 | — | Ga | —
G3 | G3 |Gs | Gg | Go | — | G1 | Go | —
Gy |Gy |G |G| — | Go| — | — | -
Gs |Gs |Gs | — |G| - |Go| - | —
Ge |Go | — |Gz | Ga| — | — | Go| —
Gr|Gr| - | - | - | - | -] -]Go

B. With Ay = {I = asazasas = ajasasas = agasa; = ajaza5a6 = agas5a7 = aiagay}, we get

H22;;I4 — {G07 Gla GQ, G3, G4, G57 G6; G7} C G7

where Gy : I = asasasas = ajaszasae = asaga; = ajasasag = asasay = ajagar, Gi
a1 = a1a2a3a405 = a3za4a¢ — a1a3za4a7 — A20506 — ajaga5a7 = agdry, G2 . g = asaqas =
a1a2a3a406 — 2030407 — A10506 = 547 = A1a20607, G3 . a3 = a2a405 = a10406 — a4a7 —
ajasazasae — a20a3as5a7 — ajasaesary, G4 L a4 = agazas = a1a30¢ = a3a7 = a102a405046 —
asagasar = ajagagar, Gs @ a5 = 20304 = (103040506 = A3040507 = Q1020 = A2A7 =
arasagar, Gg : ag = a2a3a4050¢ = 10304 = A3040¢A7 = A10205 = aodsagay = ajay and
G7 : a7 = asazaqasar = a103040607 = A304 = Q102050607 = G205 = G104.
The multiplication results are presented in Table 8.
C. With A3 = {I = Q40506 = Q1040507 = Q2040607 = a3a5a6a7}, we obtain

H??ZI_;L — {G07G17G27G3, G4, G5, G, G7} C G,

where G() I = a4qa506 — a1040507 = a20406047 — 30506047, G1 1 a1 = a1a40506 = Q40507 —
arazasacar = aiazasagar, Go @ G2 = (2040506 = (102040507 = Q406047 = (203050607,
Gg . a3 = asaqas0¢ — ajasaqasay — azazaq4aea7; — asaegay, G4 D a4 = as0g = ajasay —
asae6a7 = a3a4050607, G5 a5 = Q406 = Q10407 = a2040a50a6a7 = azagar, G6 LA = aq4a5 =
ajaqasaer = aza4a7 = azasay and G7 a7 = aqasaea7 — a1a4a57:4 a2a406 — a3a5a6.
Table 9 contains the results of the binary operation G,, * G, € H. § Hr
D. With A4 = {I = a1a2a3a4a5a6a7}, we get

HZ;;I‘L — {G07G1’G2’G3, G4,G5,G6; G7} C Ga
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Table 8: Multiplication table for the MA 2;1_14 design with I = agaszaqas = ajazasas = aszaga; =
a102a506 = A2a507 = A10607

* | Go | Gh | Gy | G3 | G4 | Gs | Gg | Gr
Go | Go | G1 | G2 | G3 | Gy | G5 | Gg | G7
Gy | G1 | Gy | - — - - | G7 | Gg
Gy | Go | — | Gy | — - |Gy | = | Gs
G3 |Gs| — | = |Go|Gr| = | = | Gy
Gy | Gy | - - | Gr | Gy | - - | G3
Gs | Gs | - | Gy | — - | Go | = | Go
Ge¢ |Ge |G7| — | = | = | = | Go| Gy
G |G | Gg | Gs | G4 | Gs | Go | G1 | Gy

Table 9: Multiplication table for the MA 251_14 design with I = aqasag = ajasasa7 = asaqagar = asasagay

x | Gop | G1 | Go | Gg | Ga | G5 | Gg | Gr
Go | Go | G1 | Ga | G3 | Gy | G5 | Gg | G7
GG Go| - | -1 -1 -1-1-
Gy [Ga| - [Go| — | - | - -1-
Gs [Gs | -~ | - [Gol - | - | - |-
Gy |Gy | = | = | - |Go | Gs | G5 | -
Gs |Gs | — | = | = |Ge | Go|Ga| —
Ge |Go | — | — | = | G5 |Gy | Go| —
Gr |G| — | = | = | = | -] - ]Go

where G : I = ajasasagasagar, G1 : a1 = asasagasagar, Go : as = ajasagasagar, Gs : ag =
arasaqasagar, G4 @ ay = arasasasagar, Gs : a5 = ajasasagagar, Gg : ag = ajasazagasar and
G7 L a7 = a102a3a4a506. e

Table 10 includes the results of the binary operation G, x G, € H, Z M for this subset.

Table 10: Multiplication table for the MA 2;1_14 design with I = ajasasasasagary

x | Go | G1 | Go | Gg | Gq | G5 | Gg | Gr
Go | Go | G1 | Ga | G3 | Gy | G5 | Gg | G7
Gl G Go| - | -1 -1 -1-1-
Gy [Ga| - |Go| — | - | -1 -1~
Gs [Gs | -~ | - [Gol - | - | - |-
Gi G| -~ | - | - G| - | - |-
Gs [Gs | — | - | - | - |Go| - | -
Go [Go| - | - | - | - | -1Go| -
GGl - -1 -1-1-1-16

The results of the analysis of the partitioned aliasing subsets of the MA 2¥~7 design with k — ¢ = 3 have
led to several conclusions. It is clear that with ¢ = 1, the defining relation cannot be partitioned into any other
aliasing subset and that the multiplication table for ¢ = 1 is that of the Abelian group, GG. Suppose that ¢ > 1.
Then it is sufficient to show that the property of closure does not hold for the aliasing subsets G, in H, 3 ,’C{q,
which is derived from A;. From the multiplication tables (Table 2 — 10) for the aliasing subsets GG, in H f w
that have been generated, it appears that some of the binary operations G, * G, are undefined in H f I’c{q. This
is so because some of the elements GG,, * GG, do not give an equivalent aliasing subset in H 3 IE_Q. As shown
in Table 2 with Si_,\ {a2a3asas} as the identity relation for the MA 215,1_12 design, G3,G4 € H 12 §;’2, but
Gs3xGy ¢ Hfiﬁz. Once more, for G1,Gog € Hlf’);f, G3 x (G4 : ajagasz = azags = asas. There is no aliased

) 2572 . . 2572 . 2572 25—2
subsets in H;"'" which contains aza4; hence Gy * Goz ¢ H;''". However, the union H;""" U H;""" of
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Eight-run minimum aberration two-level fractional factorial designs ... 10

the MA 2?1_12 design forms an Abelian group, which is GG. Similar results hold for MA 2?1_[3 and MA 231_14,
respectively.

The multiplication tables also show that the union (J7_, . 41 H ZQ " with q > 1 for some [ does not form a

— . . kiq . .
subgroup for the MA 2’;% ? designs, whenever each of the subsets in H, 22 % contains the aliased subsets, G,

u > 1, wherein a single factor or two factor interactions are aliased with other two factor interactions. How-

4 200 =4 desi . in g2 ~
ever, (J;_y ;.4 H; """ is a subgroup for the MA 2;;;" design because the aliased subsets in H;"'" contains

the aliased subsets G,, where all the single factors are aliased with the six factor interactions. Hence, the
partitioned aliasing subsets of the group, which are constructed according to the number of possible ways
the identity relation of the MA 2];{(1 designs with k£ — ¢ = 3 can be obtained, are not subgroups.

4. Conclusion

The work presented in this paper has been centred on the algebraic aspects of the eight-run fractional factorial
designs constructed using design generators that define ¢ added columns in terms of interactions of the k — ¢
basic columns, where the factorial effect columns are indistinguishable from their aliases. It is demonstrated
that the aliasing sets together with the defining relation of the eight-run MA 2¥~9 fractional factorial designs
have the following algebraic properties:

— Itis a finite Abelian (or commutative) p—group with p = 2.

— It is not cyclic.

— The partitioned sets, which are constructed according to the ways the identity relation can be ob-
tained, are not subgroups.

— The word length function m of an aliasing set is not a homomorphism.

— The group formed by the aliasing sets and the set of integer modulo k£ + 1 based on the mapping
m : G — Zj1 are not isomorphic.

It is worthwhile to extend the obtained results in this study to other regular MA 2*~¢ fractional factorials
with higher runs and to verify whether similar results hold for non-regular 2¥~¢ factorial designs.
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