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Abstract. This work is based on the use of the modified multivariate cluster sam-
pling kernel density estimation (MMCKDE). The method is demonstrated using
the Nigerian crime rate data reported to the Police as contained in the publica-
tion of the National Bureau of Statistics in 2009. The method is data-driven. The
quality of the estimates from the MMCKDE method showed some significant im-
provements over the fixed H smoothing and the multivariate cluster sampling ker-
nel density estimation methods in terms of the variance and the asymptotic mean
squared error.
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1. Introduction

Data density estimation provides estimates of the probability function from
which a set of data is drawn. Density is better estimated from the data. In den-
sity estimation, the true density is unknown. One of the popular approaches is
the multivariate kernel density estimation. It is the nonparametric estimation
approach which requires a kernel function and a bandwidth (window size or
smoothing parameter H). Early research (Little and Rubin, 2002; Wu et al.,
2007) showed that a data set with missing observations has a density curve
with points of discontinuities that may be corrected when the missing data are
accounted for in the original data set. This can be done via good imputation
methods with very low mean squared errors (Little and Rubin, 2002). The mul-
tivariate kernel density estimator herein is a direct extension of the univariate
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9 Ogbeide & Osemwenkhae
estimator.

Let X1, Xo,---,X,, denote a d-variate random sample having a density f.
We shall use the notation X; = (X1, Xjo, - - ,Xm)T and z € R? as a generic
vector with z = (z1, 29, -, xd)T. The kernel estimator of the d-variate random
sample X1, Xo, -+, X,, drawn from f evaluated at x is given by

1 n
(X H) = — 2; Kp(w = X), (1)
1=

where n is the sample size, H is a symmetric positive definite d x d matrix called
the matrix of window widths or smoothing parameters or the bandwidth matrix

and Ky (z) = |H|_% K <H‘3az>, |e| stands for the determinant of H and Ky

is the d-variate kernel indexed by H satisfying [ Ky (x)dz = 1. The integral
is over R? unless stated otherwise. The matrix H specifies the ‘width’ of the

kernel around each sample point X;. For the Gaussian kernel, which has gained

popularity in the literature, K (u) = \/Lz? exp <—“72) (Bowman and Azzalini,

1997; Kathovnik and Shmulevich, 2002; Yang et al. 2020).

In this work, the modified multivariate cluster sampling kernel density es-
timation is adopted. The method is a data-driven approach that requires only
the knowledge of the use of pilot plots and the bandwidth sizes from the data
set. This is relevant to lowering the asymptotic mean integrated squared error
(AMISE) and ensuring faster rates of convergence. The study is aimed at fitting
density to multivariate data sets. This is illustrated using the Nigerian crime
rate data as reported by the National Bureau of Statistics from 2002-2006. The
data set contains some missing observations. The missing observations are im-
puted using existing methods in the literature — the available data case (AV) and
mode-related expectation maximization (MEAM) (see Ogbeide, 2018).

There are a number of methods of estimating bandwidths in the multivari-
ate kernel density. Some of these methods use a fixed window width, while a
few others are adaptive, that is they use varied window widths in the course of
density estimation (Ogbeide et al., 2012; Wang et al., 2018; Tang et al., 2020).
For a review of the available variable methods, see Silverman (1986), Doung
and Hazelton (2005), Zhang and Chan (2011) and Jornet et al. (2020). More
very data sensitive techniques have been developed in the literature (Wu and
Tsai, 2004; Wu et al., 2007). These include the cluster and the average clus-
ter methods. The bandwidth controls the smoothness of the fitted density curve
(Cortes and Sanz, 2020). The true density is unknown. The variable window
sizes of the multivariate cluster kernel density estimation (MCKDE) and the
intersection of confidence interval (ICI) approaches for estimating densities by
Wu et al. (2007) and Kathovnik and Shmulevich (2002), respectively, can be
considered to be improvements with a view of developing methods that could
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be adaptive to the MKDE. In most cases, the above methods could lead to un-
derfitting, an indication that the methods are often less optimal (Bowman and
Azzalini, 1997; Dicu and Stanga, 2012; Ogbeide et al., 2016).

When we consider the studies on variable window sizes on the average clus-
ter approach and the intersection of confidence interval (ICI) method as applied
to MKDE, one is tasked with how sensitive these methods are, and the errors
committed? What are the effects when we extend them to multivariate kernel
density? These questions are usually considered when developing new meth-
ods. For instance, when constructing methods that are more adaptive (Ogbeide
et al., 2017). The approach of MMCKDE as presented in Ogbeide et al. (2016)
reduced the points of discontinuities in the graphical densities of the data sets.
The present study is concerned with the methods of achieving adaptive multi-
variate kernel density estimation.

2. Materials and Method

It is well known that it is better to estimate the optimal MISE element-wise
(Wand and Jones, 1995; Horova et al., 2008; Ogbeide and Osemwenkhae, 2019;
Semeyutin and O’Neill, 2020). The ideal optimal bandwidth selector that is
point-wise adaptive is given by

Hanrse = agr }[Lﬂlg AMISE(H), (2)
S

where the agr(e) is the point-wise element selection scheme.

This study adopts point-wise adaptive bandwidth procedures in estimat-
ing densities. Let H be equivalent to the selection of optimal h;; from
{H1, Hy, -, H,}. The modified multivariate cluster sampling kernel density
estimation (MMCKDE) improves on the cluster sampling kernel density es-
timate by adjusting the bandwidths using some idea from the kernel nearest
neighbour estimation of the density of a multivariate data set. Its smoothing pa-
rameter is an n X d dimensional matrix obtained from the relevant number of
clusters in an information matrix. The Euclidean distance is used to construct
the bandwidths.

The modified multivariate cluster sampling kernel density estimation (MM-
CKDE) algorithm is stated below. Steps 5, 6 and 7 are the main improvements
over other existing methods.

Step 1 Start with n clusters, each containing a single observation and an n x n
symmetric matrix of distances D = {d;;} from the observations.

Step 2 Search the distance matrix for the nearest pair of clusters. Let the distance
between the “nearest” clusters S and T be dgp = {ngnp} > %, ?il dij
in the case of observation 7 in the cluster S and observation j in the cluster
T, and ng and np are the number of observations in cluster S and cluster
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Step 3

Step 4

Step 5

Step 6

Step 7

T, respectively. See Gray (1997) for length and distance details on the
definition of d;;.

Merge (combine) cluster S and 7T'. Label the newly formed cluster (ST).
Update the entries in the distance matrix by

(a) deleting the rows and columns corresponding to clusters S and 7" and
(b) adding a row and a column giving the distances between cluster (ST)
and the remaining clusters.

Repeat steps 2 and 3 a total of n — 1 times so that all observations will
be in a single cluster at termination of the algorithm. Record the identity
clusters that are merger and the distance levels at which the mergers take
place.

Let b;-; be the average distance level of X; in the dendrogram. Suppose n;
denotes the total number of times that a cluster containing X; is merged
into a larger cluster (that is, total number of mergers that involve X;), and
ly,-- -, Ly are the distance levels at which the n; mergers take place. Then

1
—1§ :

bz'*j =n,; Kz
1=1

Apply inter-quartile range to total number of mergers that involve X; at
the boundary values. That is, take the range of the b; of the clusters in the
nearest neighbour situation, using formed clusters of

{Xi}=CipCc Cin C---Cipp, ={X1, -, X0} .

Then

ns nr

dsr(opt)i(H) = {nsnr} > Y dij, 3)

i=1 j=1

The above scheme clusters are formed in the nearest nested sequence of
clusters. Eventually, b; will be small if n; is large (that is, a large number
of mergers involve X;).

For the boundary value problem,

H = dsr(op)s(t) = 2L @
and
dsr(opt)(Hit1) < dsr(opt)(H;). )

This result is consistent with the intuitive idea of kernel estimator having to
find a compromise between estimating two distinct values of f on either side of
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discontinuity. Since the location of the boundary of f(x; H) is usually known,
we adopted this to achieve better performance in its vicinity. So we have H in
equation (3) as the bandwidths.

Given a data observation X;;. We have bandwidth factors b;-; according to the
number of clusters form (starting from Step 3 in the proposed algorithm) from
the element wise groups from the information data rows. From the bandwidth
factors, b;+;, and the global smoothing parameter, /7, we have

H = Biby, (6)

where : = 1,2,--- ,n, " = 1,2,--- ,n;, 7 = 1,2,--- ,d and H is a finite set
of optimal bandwidths {Hy,--- , H,} with each H; = h;;. We choose h} via
each of the information data rows’ hj;gp. That is, using the MSE approach to
get each h;. Then b;-; will be small if as n;- is large (that is, a large number of
mergers involving X;). Thus, the range of the b;-; of the clusters in the nearest
neighbour situation is taken using the formed clusters of

{Xi}=CipCcCin C---Cyp, ={X1,-- , Xin}.

From the data set, the above scheme clusters are formed from the nearest
nested sequence of clusters information data rows’ elements. This procedure
gives a full bandwidth matrix of vary smoothing parameters for possible values
of the data sizes for ¢ rows and j columns, : < j and ¢ > j.

To correct the problem of discontinuities at some points in the cluster sampling
approach to MKDE, points of discontinuity in the estimation are identified using
the cluster sampling approach as a pilot guide. In this case, the location of the
boundary of f(X;H) is usually known and this is utilized to achieve better
performance in its vicinity. Suppose, we have for S number of row clusters and
T number of column clusters, we have

ng nNr
Hi=dsp =) ) di. (7)

i=1 j=1

To obtain the density estimates, the bandwidth sizes are substituted into equa-
tion (1).

3. Results and Discussion

The data for this study are drawn from the Nigeria National Bureau of Statistics
Annual Abstract of Statistics published in the year 2009 on reported crime rate
to the police from 2002 — 2006 (source: www.nbs.gov.ng). The bandwidth selec-
tions, density, error and convergence rate for the multivariate cluster sampling
kernel density estimation (MCKDE) and the modified multivariate cluster sam-
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pling kernel density estimation (MMCKDE) methods are presented in Tables 1
— 4. Table 1 contains the calculated bandwidth selection errors and convergence
rate for the crime rate data.

Table 1: Evaluated estimates of the crime rate data with missing observations

Offence Case | 2002 | 2003 | 2004 | 2005 | 2006
False Pretence/ ADC | 7913 | 9508 — 9580 | 6395
Cheating MEAM | 7913 | 9508 | 9544 | 9580 | 6395
Unlawful Possession ADC | 3790 | 4142 | 5358 | 8772 | 8666
Receiving stolen property | ADC | 1161 | 1289 | 2733 | 3892 | 7308
Arson ADC ] 2005 | 1499 | 1289 | 1268 | 1010
Perjury ADC 17 50 4 3 5

Gambling ADC 199 | 148 — 631 | 473
MEAM | 199 | 148 | 390 | 631 | 473

Breach of trust ADC | 7055 | 7298 — 7967 | 5945
MEAM | 7055 | 7298 | 7633 | 7967 | 5945

Escape from ADC 220 | 272 — 99 132
custody MEAM | 220 | 272 | 186 99 132

Local acts ADC | 2885 | 5171 — 3072 | 2610
MEAM | 2885 | 5171 | 4122 | 3072 | 2610

Others ADC | 3262 | 3322 — 891 | 914

MEAM | 3262 | 3322 | 2107 | 891 | 914

Note: ADC — Available Data Case; MEAM — Mode-related Expectation Adaptive Maximization.

The results favour the use of the MEAM approach for missing data impu-
tation as the MEAM has relative lower error propagation and relative faster
convergence rate (Ogbeide, 2018).

Table 2: Estimated bandwidths for the crime rate data from 2002—-2006

Offence Case bandwidth 2002 2003 2004 2005 2006 Var
False pretence/ Fixed H 25.8500 | 25.8500 | 25.8500 | 25.8500 | 25.8500 —
Cheating MCKDE 31.900 | 0.6500 | 0.7200 | 60.1000 | 28.9000 | 459.1561
MMCKDE 31.900 | 16.2750 | 8.4975 | 30.4100 | 28.9000 | 116.7849
Unlawful Fixed H 27.3920 | 27.3920 | 27.3920 | 27.3920 | 27.3920 -
possession MCKDE 7.0400 | 24.3200 | 68.2800 | 2.1200 | 324300 | 559.0200
MMCKDE 7.0400 | 15.6900 | 45.3000 | 35.2000 | 17.2750 | 179.3006
Receiving Fixed H 33.7380 | 33.7380 | 33.7380 | 33.7380 | 33.7380 -
Stolen MCKDE 2.5600 | 28.8800 | 23.1800 | 68.3200 | 45.7500 | 489.4700
property MMCKDE 2.5600 | 28.8800 | 23.1800 | 45.7700 | 52.5100 | 310.8864
Arson Fixed H 4.5380 | 4.5380 | 4.5380 | 4.5380 | 4.5380 —
MCKDE 10.1200 | 3.6700 | 0.4200 | 4.8900 | 2.7900 10.3800
MMCKDE 5.0600 | 3.6700 | 2.0420 | 4.8900 | 2.7900 1.3664
Perjury Fixed H 0.3340 | 0.3340 | 0.3340 | 0.3340 | 0.3340 —
MCKDE 0.6600 | 0.9200 | 0.0200 | 0.0400 | 0.0300 0.14
MMCKDE 0.6600 | 0.5200 | 0.2700 | 0.0400 | 0.0300 0.0343
Gambling Fixed H 22622 | 22622 | 2.2622 | 2.2622 | 2.2622 —
MCKDE 1.02 3.356 4.8485 3.1600 | 3.0209 1.18
MMCKDE 1.0200 | 3.3560 | 4.3410 | 3.1600 | 3.2700 1.0207
Breach Fixed H 15.476 15.476 15.476 15.476 15.476 —
of Peace MCKDE 4.8600 | 2.9890 | 6.6900 | 21.2300 | 23.5650 | 164.1300
MMCKDE 4.8600 | 3.9245 6.6900 | 21.2300 | 23.5650 | 72.6648
Escape Fixed H 1.2615 | 1.2615 | 1.2615 | 1.2615 | 1.2615 —
from MCKDE 1.0400 1.5120 1.5010 | 0.6600 1.1475 0.10
custody MMCKDE 1.0400 1.2760 1.5010 1.0805 0.9035 0.0432
Local acts Fixed H 22.5310 | 22.5310 | 22.5310 | 22.5310 | 22.5310 —
MCKDE 45.7200 | 20.9900 | 21.3900 | 9.2400 | 15.3150 | 134.0300
MMCKDE 27.8800 | 20.9900 | 21.3900 | 13.1200 | 14.2175 | 28.5666
Others Fixed H 12.5260 | 12.5260 | 12.5260 | 12.5260 | 12.5260 —
MCKDE 3.0110 | 24.3100 | 24.3100 | 9.7600 | 12.3500 | 78.3682
MMCKDE 1.5055 | 12.1550 | 24.3100 | 4.8800 | 10.9841 | 62.2800

For the MEAM imputation using the fixed H, the MCKDE and the MMCKDE,
http://www.bjs-uniben.org/
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it can be inferred that the MMCKDE bandwidths selection approach has a lower
variance compared to the MCKDE approach.

Table 3 contains the density estimates of the various bandwidths for the crime
rate from 2002-2006. It can be seen from Table 3 that the density sum is closer
to unity for the MMCKDE compared to the MCKDE.

Table 3: Density estimates of the various bandwidths for the crime rate from
2002-2006

Offence Case: Densities | 2002 2003 2004 2005 2006 | Density sum
False pretence/ Fixed H 0.1842 1 0.2214 [ 0.2231 | 0.2231 | 0.1411 0.9929
Cheating MCKDE 0.1901 | 0.2123 | 0.2337 | 0.2231 | 0.1465 1.0057
MMCKDE 0.1842 | 0.2189 | 0.2231 | 0.2231 | 0.1489 0.9982
Unlawful Fixed H 0.1321 [ 0.1352 | 0.1765 | 0.2991 | 0.1566 0.8995
possession MCKDE 0.1233 | 0.1331 | 0.1944 | 0.2577 | 0.282 0.9705
MMCKDE 0.1321 | 0.1352 | 0.1765 | 0.2991 | 0.211 0.9939
Receiving Fixed H 0.0708 | 0.0787 | 0.1668 | 0.2399 | 0.3941 0.9503
stolen MCKDE 0.0811 | 0.0787 | 0.1668 | 0.2376 | 0.4023 0.9665
property MMCKDE 0.0811 | 0.0768 | 0.1881 | 0.2376 | 0.4147 0.9983
Arson Fixed H 0.2514 1 0.1576 [ 0.1322 | 0.131T | 0.3195 0.9918
MCKDE 0.2514 | 0.1713 | 0.1314 | 0.1231 | 0.3171 0.9943
MMCKDE 0.2514 | 0.1713 | 0.1322 | 0.1244 | 0.3192 0.9985
Perjury Fixed H 0.2151 | 0.6101 [ 0.0503 | 0.0366 | 0.0633 0.9754
MCKDE 0.2198 | 0.6088 | 0.0506 | 0.0379 | 0.0633 0.9804
MMCKDE 0.2198 | 0.6198 | 0.0531 | 0.0399 | 0.0633 0.9959
Gambling Fixed H 0.1081 [ 0.0799 | 0.2001 | 0.3392 | 0.257 0.9843
MCKDE 0.1083 | 0.0795 | 0.2116 | 0.3388 | 0.257 0.9952
MMCKDE 0.1083 | 0.0801 | 0.2116 | 0.3428 | 0.257 0.9998
Breach Fixed H 0.1965 | 0.2033 [ 0.2102 | 0.2219 | 0.1656 0.9975
of Peace MCKDE 0.1968 | 0.2001 | 0.2102 | 0.2219 | 0.1656 0.9946
MMCKDE 0.1968 | 0.2033 | 0.2122 | 0.2219 | 0.1656 0.9998
Escape Fixed H 0.2422 1 0.2887 [ 0.2041 | 0.1089 | 0.1453 0.9892
from custody MCKDE 0.2476 | 0.2887 | 0.2041 | 0.1089 | 0.1453 0.9946
MMCKDE 0.2476 | 0.2939 | 0.2041 | 0.1089 | 0.1453 0.9998
Local acts Fixed H 0.1615 | 0.2833 [ 0.2289 | 0.1701 | 0.1461 0.9899
MCKDE 0.1615 | 0.2833 | 0.2298 | 0.1701 | 0.1461 0.9908
MMCKDE 0.1615 | 0.2882 | 0.2308 | 0.172 | 0.1461 0.9986
Others Fixed H 0.3108 | 0.2998 [ 0.2007 | 0.0823 | 0.0871 0.9807
MCKDE 0.3108 | 0.2998 | 0.2007 | 0.0849 | 0.0871 0.9833
MMCKDE 0.3108 | 0.3123 | 0.2007 | 0.0849 | 0.0871 0.9958

The AMISE* and the convergence rates of methods are given in Table 4. From
Table 4, it can be concluded that there the relative errors, 2™ (which is the error in
relation to the fixed optimal bandwidth value) and the AMISE™ of the proposed
method (i.e., MMCKDE) are smaller. More so, the proposed method has faster
convergence rates compared to its classical version. Simply put, the MMCKDE
has lower error propagation and faster convergence rates when used to estimate
the data vis-a-vis the fixed optimal H and MCKDE approaches.

The estimated bandwidth selection errors and the convergence rates for the
crime rate data with missing observations using various methods favour the use
of the MMCKDE approach over the fixed H and MCKDE approaches. This is
because MMCKDE’s bandwidth errors are smaller and the scheme has a higher
convergence rate. The MMCKDE has some improvements over the MCKDE
approach as shown in Table 3 and Table 4. Apart from the fact that the MM-
CKDE is data sensitive, it also provides full bandwidths matrix for the multi-
variate kernel density estimation. As in other improved methods, the MMCKDE
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Table 4: Bandwidth selection errors and convergence rate for the estimated
bandwidths

Issue Approach | Mean Con\l/{ergence Variance ) h* AMISE*
ate

False pretence/ | MCKDE | 24.4540 1.0907 459.1561 | 21.4279 | 10.3869 | 2.1828x 10"
Cheating MMCKDE | 17.4540 1.4255 116.7849 | 10.8067 | 5.2384 | 1.2624x10~!

Unlawful MCKDE | 27.3920 1.0000 559.0200 | 23.6436 | 11.4609 | 2.3616x10~"
possession MMCKDE | 24.3020 1.1991 179.3006 | 13.3903 | 6.4907 | 1.4985x10~!

Receiving MCKDE | 33.1460 1.1215 489.4700 | 22.1239 | 10.7242 | 2.2394x 107"
stolen Property | MMCKDE | 30.5800 1.1625 310.8864 | 17.6319 | 8.5468 | 1.8676x 10"

Arson MCKDE | 4.3780 1.0285 10.3800 | 3.2218 | 1.5617 | 4.7943x1072
MMCKDE | 3.4910 1.3502 1.3664 1.1689 | 0.5661 | 2.1304x10~2

Perjury MCKDE | 0.3340 1.0000 0.1400 0.3741 | 0.1813 | 8.5632x10~°
MMCKDE | 0.2380 1.5881 0.0343 0.1852 | 0.0897 | 4.8793x1073

Gambling MCKDE | 3.0290 0.5795 1.1800 1.0862 | 0.5265 | 2.0089x10>
MMCKDE | 3.0209 0.5829 1.0419 1.0207 | 0.4947 | 1.9114x10~2

Breach MCKDE | 14.7749 1.1058 164.1300 | 12.8113 | 6.2101 | 1.4465x107"
of Peace MMCKDE | 12.0539 1.4273 72.6648 | 8.5243 | 4.1320 | 1.0441x10~}
Escape MCKDE 1.1721 1.1206 0.1000 0.3162 | 0.1532 | 7.4854x107°
from custody | MMCKDE | 1.1602 1.1379 0.0432 0.2078 | 0.1007 | 5.5851x1073

Local acts MCKDE | 22.5310 1.0000 134.0300 | 11.5771 | 5.6118 | 1.3339x107*
MMCKDE | 18.6925 1.3152 28.3639 | 5.3447 | 2.5907 | 7.1876x102

Others MCKDE | 14.7482 0.7516 78.3682 | 8.8525 | 4.2911 | 1.0762x107*
MMCKDE | 10.7482 1.2189 62.2800 | 7.8919 | 3.8254 | 9.8171x102

scheme requires only simple but two additional steps when compared to the
MCKDE approach. These additional procedures are in the choice and applica-
tion of the smoothing parameters to multivariate density estimation. These steps
introduce the adaptive density.

4. Conclusion

This work proposes the use of the MMCKDE approach for kernel density es-
timation. This approach is based on the data at hand. The study demonstrated
the usefulness of the MMCKDE approach with the Nigerian crime rate data re-
ported to the police. The quality of the obtained estimates of the MMCKDE ap-
proach showed some improvements over the fixed H and MCKDE approaches
in terms of the variance, the asymptotic mean squared error and the rate of con-
vergence. The fixed H approach is limited by both over fitting and under fitting
as the case may be. The MMCKDE is able to circumvent points of discontinu-
ities and displays adaptive density.
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