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Abstract. This work is based on the use of the modified multivariate cluster sam-
pling kernel density estimation (MMCKDE). The method is demonstrated using
the Nigerian crime rate data reported to the Police as contained in the publica-
tion of the National Bureau of Statistics in 2009. The method is data-driven. The
quality of the estimates from the MMCKDE method showed some significant im-
provements over the fixed H smoothing and the multivariate cluster sampling ker-
nel density estimation methods in terms of the variance and the asymptotic mean
squared error.
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1. Introduction

Data density estimation provides estimates of the probability function from
which a set of data is drawn. Density is better estimated from the data. In den-
sity estimation, the true density is unknown. One of the popular approaches is
the multivariate kernel density estimation. It is the nonparametric estimation
approach which requires a kernel function and a bandwidth (window size or
smoothing parameter H). Early research (Little and Rubin, 2002; Wu et al.,
2007) showed that a data set with missing observations has a density curve
with points of discontinuities that may be corrected when the missing data are
accounted for in the original data set. This can be done via good imputation
methods with very low mean squared errors (Little and Rubin, 2002). The mul-
tivariate kernel density estimator herein is a direct extension of the univariate
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9 Ogbeide & Osemwenkhae
estimator.

Let X1, X2, · · · , Xn denote a d-variate random sample having a density f .
We shall use the notation Xi = (Xi1, Xi2, · · · , Xin)

T and x ∈ Rd as a generic
vector with x = (x1, x2, · · · , xd)T . The kernel estimator of the d-variate random
sample X1, X2, · · · , Xn drawn from f evaluated at x is given by

f̂(X,H) =
1

n

n∑
i=1

KH(x−Xi), (1)

where n is the sample size,H is a symmetric positive definite d×dmatrix called
the matrix of window widths or smoothing parameters or the bandwidth matrix
and KH(x) = |H|−

1
2 K
(
H−

1
2x
)

, |•| stands for the determinant of H and KH

is the d-variate kernel indexed by H satisfying
∫
KH(x)dx = 1. The integral

is over Rd unless stated otherwise. The matrix H specifies the ‘width’ of the
kernel around each sample point Xi. For the Gaussian kernel, which has gained
popularity in the literature, K(u) = 1√

2π
exp

(
−u2

2

)
(Bowman and Azzalini,

1997; Kathovnik and Shmulevich, 2002; Yang et al. 2020).
In this work, the modified multivariate cluster sampling kernel density es-

timation is adopted. The method is a data-driven approach that requires only
the knowledge of the use of pilot plots and the bandwidth sizes from the data
set. This is relevant to lowering the asymptotic mean integrated squared error
(AMISE) and ensuring faster rates of convergence. The study is aimed at fitting
density to multivariate data sets. This is illustrated using the Nigerian crime
rate data as reported by the National Bureau of Statistics from 2002–2006. The
data set contains some missing observations. The missing observations are im-
puted using existing methods in the literature – the available data case (AV) and
mode-related expectation maximization (MEAM) (see Ogbeide, 2018).

There are a number of methods of estimating bandwidths in the multivari-
ate kernel density. Some of these methods use a fixed window width, while a
few others are adaptive, that is they use varied window widths in the course of
density estimation (Ogbeide et al., 2012; Wang et al., 2018; Tang et al., 2020).
For a review of the available variable methods, see Silverman (1986), Doung
and Hazelton (2005), Zhang and Chan (2011) and Jornet et al. (2020). More
very data sensitive techniques have been developed in the literature (Wu and
Tsai, 2004; Wu et al., 2007). These include the cluster and the average clus-
ter methods. The bandwidth controls the smoothness of the fitted density curve
(Cortes and Sanz, 2020). The true density is unknown. The variable window
sizes of the multivariate cluster kernel density estimation (MCKDE) and the
intersection of confidence interval (ICI) approaches for estimating densities by
Wu et al. (2007) and Kathovnik and Shmulevich (2002), respectively, can be
considered to be improvements with a view of developing methods that could
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Density estimation ... 10
be adaptive to the MKDE. In most cases, the above methods could lead to un-
derfitting, an indication that the methods are often less optimal (Bowman and
Azzalini, 1997; Dicu and Stanga, 2012; Ogbeide et al., 2016).

When we consider the studies on variable window sizes on the average clus-
ter approach and the intersection of confidence interval (ICI) method as applied
to MKDE, one is tasked with how sensitive these methods are, and the errors
committed? What are the effects when we extend them to multivariate kernel
density? These questions are usually considered when developing new meth-
ods. For instance, when constructing methods that are more adaptive (Ogbeide
et al., 2017). The approach of MMCKDE as presented in Ogbeide et al. (2016)
reduced the points of discontinuities in the graphical densities of the data sets.
The present study is concerned with the methods of achieving adaptive multi-
variate kernel density estimation.

2. Materials and Method

It is well known that it is better to estimate the optimal MISE element-wise
(Wand and Jones, 1995; Horova et al., 2008; Ogbeide and Osemwenkhae, 2019;
Semeyutin and O’Neill, 2020). The ideal optimal bandwidth selector that is
point-wise adaptive is given by

HAMISE = agrmin
h∈H

AMISE(H), (2)

where the agr(•) is the point-wise element selection scheme.
This study adopts point-wise adaptive bandwidth procedures in estimat-

ing densities. Let H be equivalent to the selection of optimal hij from
{H1, H2, · · · , Hn}. The modified multivariate cluster sampling kernel density
estimation (MMCKDE) improves on the cluster sampling kernel density es-
timate by adjusting the bandwidths using some idea from the kernel nearest
neighbour estimation of the density of a multivariate data set. Its smoothing pa-
rameter is an n × d dimensional matrix obtained from the relevant number of
clusters in an information matrix. The Euclidean distance is used to construct
the bandwidths.

The modified multivariate cluster sampling kernel density estimation (MM-
CKDE) algorithm is stated below. Steps 5, 6 and 7 are the main improvements
over other existing methods.

Step 1 Start with n clusters, each containing a single observation and an n × n
symmetric matrix of distances D = {dij} from the observations.

Step 2 Search the distance matrix for the nearest pair of clusters. Let the distance
between the “nearest” clusters S and T be dST = {nSnT}

∑nS

i=1

∑nT

j=1 dij
in the case of observation i in the cluster S and observation j in the cluster
T , and nS and nT are the number of observations in cluster S and cluster
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11 Ogbeide & Osemwenkhae
T , respectively. See Gray (1997) for length and distance details on the
definition of dij .

Step 3 Merge (combine) cluster S and T . Label the newly formed cluster (ST ).
Update the entries in the distance matrix by
(a) deleting the rows and columns corresponding to clusters S and T and
(b) adding a row and a column giving the distances between cluster (ST )
and the remaining clusters.

Step 4 Repeat steps 2 and 3 a total of n − 1 times so that all observations will
be in a single cluster at termination of the algorithm. Record the identity
clusters that are merger and the distance levels at which the mergers take
place.

Step 5 Let bi∗j be the average distance level of Xi in the dendrogram. Suppose ni
denotes the total number of times that a cluster containing Xi is merged
into a larger cluster (that is, total number of mergers that involve Xi), and
`1, · · · , `ni are the distance levels at which the ni mergers take place. Then

bi∗j = n−1i

ni∑
i=1

`i.

Step 6 Apply inter-quartile range to total number of mergers that involve Xi at
the boundary values. That is, take the range of the bi of the clusters in the
nearest neighbour situation, using formed clusters of

{Xi} = Ci0 ⊂ Ci1 ⊂ · · ·Cini
= {X1, · · · , Xn} .

Then

dST (opt)i(H) = {nSnT}
nS∑
i=1

nT∑
j=1

dij, (3)

The above scheme clusters are formed in the nearest nested sequence of
clusters. Eventually, bi will be small if ni is large (that is, a large number
of mergers involve Xi).

Step 7 For the boundary value problem,

H = dST (opt)i(H) =
dST (Hi)

2
(4)

and

dST (opt)(Hi+1) ≤ dST (opt)(Hi). (5)

This result is consistent with the intuitive idea of kernel estimator having to
find a compromise between estimating two distinct values of f on either side of
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discontinuity. Since the location of the boundary of f̂(x;H) is usually known,
we adopted this to achieve better performance in its vicinity. So we have H in
equation (3) as the bandwidths.

Given a data observation Xij . We have bandwidth factors bi∗j according to the
number of clusters form (starting from Step 3 in the proposed algorithm) from
the element wise groups from the information data rows. From the bandwidth
factors, bi∗j , and the global smoothing parameter, h∗i , we have

H = h∗i bi∗j (6)

where i = 1, 2, · · · , n, i∗ = 1, 2, · · · , ni, j = 1, 2, · · · , d and H is a finite set
of optimal bandwidths {H1, · · · , Hn} with each Hi = hij . We choose h∗i via
each of the information data rows’ hMSE . That is, using the MSE approach to
get each h∗i . Then bi∗j will be small if as ni∗ is large (that is, a large number of
mergers involving Xi). Thus, the range of the bi∗j of the clusters in the nearest
neighbour situation is taken using the formed clusters of

{Xi} = Ci0 ⊂ Ci1 ⊂ · · ·Cini
= {X1, · · · , Xn} .

From the data set, the above scheme clusters are formed from the nearest
nested sequence of clusters information data rows’ elements. This procedure
gives a full bandwidth matrix of vary smoothing parameters for possible values
of the data sizes for i rows and j columns, i ≤ j and i > j.

To correct the problem of discontinuities at some points in the cluster sampling
approach to MKDE, points of discontinuity in the estimation are identified using
the cluster sampling approach as a pilot guide. In this case, the location of the
boundary of f̂(X;H) is usually known and this is utilized to achieve better
performance in its vicinity. Suppose, we have for S number of row clusters and
T number of column clusters, we have

Hi = dST =

nS∑
i=1

nT∑
j=1

dij. (7)

To obtain the density estimates, the bandwidth sizes are substituted into equa-
tion (1).

3. Results and Discussion

The data for this study are drawn from the Nigeria National Bureau of Statistics
Annual Abstract of Statistics published in the year 2009 on reported crime rate
to the police from 2002 – 2006 (source: www.nbs.gov.ng). The bandwidth selec-
tions, density, error and convergence rate for the multivariate cluster sampling
kernel density estimation (MCKDE) and the modified multivariate cluster sam-
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13 Ogbeide & Osemwenkhae
pling kernel density estimation (MMCKDE) methods are presented in Tables 1
– 4. Table 1 contains the calculated bandwidth selection errors and convergence
rate for the crime rate data.

Table 1: Evaluated estimates of the crime rate data with missing observations
Offence Case 2002 2003 2004 2005 2006

False Pretence/ ADC 7913 9508 – 9580 6395
Cheating MEAM 7913 9508 9544 9580 6395

Unlawful Possession ADC 3790 4142 5358 8772 8666
Receiving stolen property ADC 1161 1289 2733 3892 7308

Arson ADC 2005 1499 1289 1268 1010
Perjury ADC 17 50 4 3 5

Gambling ADC 199 148 – 631 473
MEAM 199 148 390 631 473

Breach of trust ADC 7055 7298 – 7967 5945
MEAM 7055 7298 7633 7967 5945

Escape from ADC 220 272 – 99 132
custody MEAM 220 272 186 99 132

Local acts ADC 2885 5171 – 3072 2610
MEAM 2885 5171 4122 3072 2610

Others ADC 3262 3322 – 891 914
MEAM 3262 3322 2107 891 914

Note: ADC – Available Data Case; MEAM – Mode-related Expectation Adaptive Maximization.

The results favour the use of the MEAM approach for missing data impu-
tation as the MEAM has relative lower error propagation and relative faster
convergence rate (Ogbeide, 2018).

Table 2: Estimated bandwidths for the crime rate data from 2002–2006
Offence Case bandwidth 2002 2003 2004 2005 2006 Var

False pretence/ Fixed H 25.8500 25.8500 25.8500 25.8500 25.8500 –
Cheating MCKDE 31.900 0.6500 0.7200 60.1000 28.9000 459.1561

MMCKDE 31.900 16.2750 8.4975 30.4100 28.9000 116.7849
Unlawful Fixed H 27.3920 27.3920 27.3920 27.3920 27.3920 –

possession MCKDE 7.0400 24.3200 68.2800 2.1200 324300 559.0200
MMCKDE 7.0400 15.6900 45.3000 35.2000 17.2750 179.3006

Receiving Fixed H 33.7380 33.7380 33.7380 33.7380 33.7380 –
Stolen MCKDE 2.5600 28.8800 23.1800 68.3200 45.7500 489.4700

property MMCKDE 2.5600 28.8800 23.1800 45.7700 52.5100 310.8864
Arson Fixed H 4.5380 4.5380 4.5380 4.5380 4.5380 –

MCKDE 10.1200 3.6700 0.4200 4.8900 2.7900 10.3800
MMCKDE 5.0600 3.6700 2.0420 4.8900 2.7900 1.3664

Perjury Fixed H 0.3340 0.3340 0.3340 0.3340 0.3340 –
MCKDE 0.6600 0.9200 0.0200 0.0400 0.0300 0.14

MMCKDE 0.6600 0.5200 0.2700 0.0400 0.0300 0.0343
Gambling Fixed H 2.2622 2.2622 2.2622 2.2622 2.2622 –

MCKDE 1.02 3.356 4.8485 3.1600 3.0209 1.18
MMCKDE 1.0200 3.3560 4.3410 3.1600 3.2700 1.0207

Breach Fixed H 15.476 15.476 15.476 15.476 15.476 –
of Peace MCKDE 4.8600 2.9890 6.6900 21.2300 23.5650 164.1300

MMCKDE 4.8600 3.9245 6.6900 21.2300 23.5650 72.6648
Escape Fixed H 1.2615 1.2615 1.2615 1.2615 1.2615 –
from MCKDE 1.0400 1.5120 1.5010 0.6600 1.1475 0.10

custody MMCKDE 1.0400 1.2760 1.5010 1.0805 0.9035 0.0432
Local acts Fixed H 22.5310 22.5310 22.5310 22.5310 22.5310 –

MCKDE 45.7200 20.9900 21.3900 9.2400 15.3150 134.0300
MMCKDE 27.8800 20.9900 21.3900 13.1200 14.2175 28.5666

Others Fixed H 12.5260 12.5260 12.5260 12.5260 12.5260 –
MCKDE 3.0110 24.3100 24.3100 9.7600 12.3500 78.3682

MMCKDE 1.5055 12.1550 24.3100 4.8800 10.9841 62.2800

For the MEAM imputation using the fixed H, the MCKDE and the MMCKDE,
http://www.bjs-uniben.org/
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it can be inferred that the MMCKDE bandwidths selection approach has a lower
variance compared to the MCKDE approach.

Table 3 contains the density estimates of the various bandwidths for the crime
rate from 2002–2006. It can be seen from Table 3 that the density sum is closer
to unity for the MMCKDE compared to the MCKDE.

Table 3: Density estimates of the various bandwidths for the crime rate from
2002–2006

Offence Case: Densities 2002 2003 2004 2005 2006 Density sum
False pretence/ Fixed H 0.1842 0.2214 0.2231 0.2231 0.1411 0.9929

Cheating MCKDE 0.1901 0.2123 0.2337 0.2231 0.1465 1.0057
MMCKDE 0.1842 0.2189 0.2231 0.2231 0.1489 0.9982

Unlawful Fixed H 0.1321 0.1352 0.1765 0.2991 0.1566 0.8995
possession MCKDE 0.1233 0.1331 0.1944 0.2577 0.282 0.9705

MMCKDE 0.1321 0.1352 0.1765 0.2991 0.211 0.9939
Receiving Fixed H 0.0708 0.0787 0.1668 0.2399 0.3941 0.9503

stolen MCKDE 0.0811 0.0787 0.1668 0.2376 0.4023 0.9665
property MMCKDE 0.0811 0.0768 0.1881 0.2376 0.4147 0.9983
Arson Fixed H 0.2514 0.1576 0.1322 0.1311 0.3195 0.9918

MCKDE 0.2514 0.1713 0.1314 0.1231 0.3171 0.9943
MMCKDE 0.2514 0.1713 0.1322 0.1244 0.3192 0.9985

Perjury Fixed H 0.2151 0.6101 0.0503 0.0366 0.0633 0.9754
MCKDE 0.2198 0.6088 0.0506 0.0379 0.0633 0.9804

MMCKDE 0.2198 0.6198 0.0531 0.0399 0.0633 0.9959
Gambling Fixed H 0.1081 0.0799 0.2001 0.3392 0.257 0.9843

MCKDE 0.1083 0.0795 0.2116 0.3388 0.257 0.9952
MMCKDE 0.1083 0.0801 0.2116 0.3428 0.257 0.9998

Breach Fixed H 0.1965 0.2033 0.2102 0.2219 0.1656 0.9975
of Peace MCKDE 0.1968 0.2001 0.2102 0.2219 0.1656 0.9946

MMCKDE 0.1968 0.2033 0.2122 0.2219 0.1656 0.9998
Escape Fixed H 0.2422 0.2887 0.2041 0.1089 0.1453 0.9892

from custody MCKDE 0.2476 0.2887 0.2041 0.1089 0.1453 0.9946
MMCKDE 0.2476 0.2939 0.2041 0.1089 0.1453 0.9998

Local acts Fixed H 0.1615 0.2833 0.2289 0.1701 0.1461 0.9899
MCKDE 0.1615 0.2833 0.2298 0.1701 0.1461 0.9908

MMCKDE 0.1615 0.2882 0.2308 0.172 0.1461 0.9986
Others Fixed H 0.3108 0.2998 0.2007 0.0823 0.0871 0.9807

MCKDE 0.3108 0.2998 0.2007 0.0849 0.0871 0.9833
MMCKDE 0.3108 0.3123 0.2007 0.0849 0.0871 0.9958

The AMISE∗ and the convergence rates of methods are given in Table 4. From
Table 4, it can be concluded that there the relative errors, h∗ (which is the error in
relation to the fixed optimal bandwidth value) and the AMISE∗ of the proposed
method (i.e., MMCKDE) are smaller. More so, the proposed method has faster
convergence rates compared to its classical version. Simply put, the MMCKDE
has lower error propagation and faster convergence rates when used to estimate
the data vis-á-vis the fixed optimal H and MCKDE approaches.

The estimated bandwidth selection errors and the convergence rates for the
crime rate data with missing observations using various methods favour the use
of the MMCKDE approach over the fixed H and MCKDE approaches. This is
because MMCKDE’s bandwidth errors are smaller and the scheme has a higher
convergence rate. The MMCKDE has some improvements over the MCKDE
approach as shown in Table 3 and Table 4. Apart from the fact that the MM-
CKDE is data sensitive, it also provides full bandwidths matrix for the multi-
variate kernel density estimation. As in other improved methods, the MMCKDE
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Table 4: Bandwidth selection errors and convergence rate for the estimated
bandwidths

Issue Approach Mean Convergence Variance δ h∗ AMISE∗

Rate
False pretence/ MCKDE 24.4540 1.0907 459.1561 21.4279 10.3869 2.1828×10−1

Cheating MMCKDE 17.4540 1.4255 116.7849 10.8067 5.2384 1.2624×10−1

Unlawful MCKDE 27.3920 1.0000 559.0200 23.6436 11.4609 2.3616×10−1

possession MMCKDE 24.3020 1.1991 179.3006 13.3903 6.4907 1.4985×10−1

Receiving MCKDE 33.1460 1.1215 489.4700 22.1239 10.7242 2.2394×10−1

stolen Property MMCKDE 30.5800 1.1625 310.8864 17.6319 8.5468 1.8676×10−1

Arson MCKDE 4.3780 1.0285 10.3800 3.2218 1.5617 4.7943×10−2

MMCKDE 3.4910 1.3502 1.3664 1.1689 0.5661 2.1304×10−2

Perjury MCKDE 0.3340 1.0000 0.1400 0.3741 0.1813 8.5632×10−3

MMCKDE 0.2380 1.5881 0.0343 0.1852 0.0897 4.8793×10−3

Gambling MCKDE 3.0290 0.5795 1.1800 1.0862 0.5265 2.0089×10−2

MMCKDE 3.0209 0.5829 1.0419 1.0207 0.4947 1.9114×10−2

Breach MCKDE 14.7749 1.1058 164.1300 12.8113 6.2101 1.4465×10−1

of Peace MMCKDE 12.0539 1.4273 72.6648 8.5243 4.1320 1.0441×10−1

Escape MCKDE 1.1721 1.1206 0.1000 0.3162 0.1532 7.4854×10−3

from custody MMCKDE 1.1602 1.1379 0.0432 0.2078 0.1007 5.5851×10−3

Local acts MCKDE 22.5310 1.0000 134.0300 11.5771 5.6118 1.3339×10−1

MMCKDE 18.6925 1.3152 28.3639 5.3447 2.5907 7.1876×10−2

Others MCKDE 14.7482 0.7516 78.3682 8.8525 4.2911 1.0762×10−1

MMCKDE 10.7482 1.2189 62.2800 7.8919 3.8254 9.8171×10−2

scheme requires only simple but two additional steps when compared to the
MCKDE approach. These additional procedures are in the choice and applica-
tion of the smoothing parameters to multivariate density estimation. These steps
introduce the adaptive density.

4. Conclusion

This work proposes the use of the MMCKDE approach for kernel density es-
timation. This approach is based on the data at hand. The study demonstrated
the usefulness of the MMCKDE approach with the Nigerian crime rate data re-
ported to the police. The quality of the obtained estimates of the MMCKDE ap-
proach showed some improvements over the fixed H and MCKDE approaches
in terms of the variance, the asymptotic mean squared error and the rate of con-
vergence. The fixed H approach is limited by both over fitting and under fitting
as the case may be. The MMCKDE is able to circumvent points of discontinu-
ities and displays adaptive density.
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