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Abstract. In this research work, we introduce a new family of distributions termed the Beta Odd Generalized Expo-
nential (BOGE) distribution. Various properties of the model are derived. We present and study three special cases of
the BOGE family of distribution. Estimation for the parameters of the new distribution are discussed by the method of
maximum likelihood. Applications to two real data sets are provided in order to demonstrate the performance of the
proposed family of distributions which shows that it is better than some existing distributions.
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1. Introduction

Parametric statistical inferences and modeling of data sets require the knowledge of appropriate distributional
assumptions of the data sets. Thus, classical statistical distributions have been used in many areas of applied
and social sciences to make inferences and model real life data. Hence, modeling the real life data with some
existing classical distributions does not provide a reasonable parametric fit and is often an approximation
rather than reality. An alternative approach to overcome these challenges is to use nonparametric methods
to model the data sets since they do not depend on distributional assumptions like the parametric methods.
However, the non-parametric methods have their own drawbacks. This includes loss in power when the
parametric method is appropriate, lack of imprecision measurement, computational difficulties, difficult to
calculate residual variability and loss information.

The art of proposing generalized class of distributions by extending the common families of continuous
distribution has attracted theoretical and applied statisticians due to their flexible properties. These new
families of distributions have been used for modelling data in many applied areas such as modeling machine
life cycle in engineering, modeling duration without claims in actuarial science, modeling survival times of
patients after surgery in the medical science, modeling failure rate of software in computer science, average
time from marriage to divorce in the social science and modeling environmental pollution in environmental
sciences.

The techniques for modifying the classical distributions are usually referred to as generators in literature
and are capable of improving the goodness-of-fit of the modified distributions. Eugene et al. (2002) intro-
duced a general class of distributions generated from the logit of the beta random variable of which beta-
normal distribution is a special case of the family and called it the Beta-G family of distributions. According
to them, the cumulative distribution function of the Beta-G family is defined as

F (x) =
1

B(a, b)

∫ G(x)

0
wa−1(1− w)b−1dw, (1)

where a, b > 0, are two additional parameters, G(x) is the cdf of a random variable X and B(a, b) =∫ 1
0 w

a−1(1− w)b−1dw is the beta function.
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Tahir et al. (2015) defined the cumulative distribution function of a new family of distribution by replacing
x in the generalized exponential model by the odd function G(x; ξ)/Ḡ(x; ξ) termed as the Odd Generalized
Exponential(ODE) family of distributions as

F (x) = F (x;α, λ, ξ) =
(

1− e−λ
G(x;ξ)

Ḡ(x,ξ)

)α
, x > 0, (2)

where G(x; ξ) is the cumulative distribution function of the baseline distribution.
Gupta et al. (1998) introduced a new family of distributions namely Exponentiated Exponential distribu-

tion and Gupta et al. (2001) studied some properties of the new family. Eugene et al. (2002) introduced a
general class of distributions generated from the logit of the beta random variable of which beta-normal dis-
tribution is a special case of the family. Nadarajah and Kotz (2004) introduced the beta Gumbel distribution,
Nadarajah and Kotz (2005) the beta exponential distribution, Barreto-Souza et al. (2010) the beta generalized
exponential (BGE) distribution and Singla el al. (2012) the Beta Generalized Weibull (BGW) distribution.

Tahir et al. (2015) proposed a new family of continuous distributions called the odd generalized exponen-
tial (OGE) family, whose hazard rate could be increasing, decreasing, J, reversed-J, bathtub and upside-down
bathtub.

Muhammad (2016) introduced a new family of distributions called the Poisson-odd generalized exponen-
tial distribution (POGE) which has the odd generalized exponential as its limiting distribution and derived
Various properties of the new model. A new class of distributions called the generalized odd generalized ex-
ponential family was introduced by Alizadeh et al. (2017b) and some of its mathematical properties including
explicit expressions for moments, quantile and generating functions, Renyi, Shannon and q-entropies, order
statistics and probability weighted moments were derived.

In this paper we propose a new family of distribution by choosing the baseline distribution of the Beta G
distribution to be the Odd Generalized exponential family of distribution.

2. Materials and method

Consider the cumulative distribution function (cdf) of a random variable X given by Eugene et al. (2002)
which they defined a class of generalized distributions, the ”beta G” distribution as

F (x) =
1

B(a, b)

∫ M(x)

0
wa−1(1− w)b−1dw, (3)

where a, b > 0, are two additional parameters and B(a, b) =
∫ 1

0 w
a−1(1−w)b−1dw is the beta function. We

can rewrite (3) as

F (x) = IM(x)(a, b), (4)

where Iy(a, b) = B(a, b)−1
∫ y

0 w
a−1(1−w)b−1dw denotes the incomplete beta function ratio, that is the cdf

of beta distribution with parameters a and b.
The probability density function (pdf) corresponding to (3) can be written in the form

f(x) =
1

B(a, b)
[M(x)]a−1(1−M(x))b−1m(x). (5)

We now consider the baseline cumulative distribution function (cdf) M(x; ξ) and probability density func-
tion (pdf) m(x; ξ) depending on a parameter vector ξ, where ξ = (ξ1, ξ2, . . .) to be the Odd generalized
exponential family of distribution given by Tahir et al. (2015) respectively as

M(x) = M(x;α, λ, ξ) =
(

1− e−λ
G(x;ξ)

Ḡ(x,ξ)

)α
, x > 0 (6)
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and

m(x) = m(x;α, λ, ξ) =
αλg(x; ξ)

Ḡ(x, ξ)2
e
−λG(x;ξ)

Ḡ(x,ξ)

(
1− e−λ

G(x;ξ)

Ḡ(x,ξ)

)α−1
, x > 0. (7)

3. Density and distribution functions

We now introduce the distribution called Beta odd generalized exponential (BOGE) family of distribution
by choosing the baseline distribution M(x) cdf (6) and pdf (7) of OGE family of distribution into the cdf (3)
and pdf (5) of the Beta G family respectively. The cdf is given as

F (x) =
1

B(a, b)

∫ (
1−e−λ

G(x;ξ)
Ḡ(x,ξ)

)α
0

wa−1(1− w)b−1dw, x > 0, (8)

where α, λ, a, b > 0 are parameters, G(x; ξ) is the baseline cdf, ξ a vector parameter, Ḡ(x; ξ) = 1−G(x; ξ)

and B(a, b) =
∫ 1

0 w
a−1(1− w)b−1dw is the beta function. The cdf (8) can be rewritten as

F (x) = I(
1−e−λ

G(x;ξ)
Ḡ(x;ξ)

)α (a, b) , (9)

where Iy(a, b) = B(a, b)−1
∫ y

0 w
a−1(1 − w)b−1dw denotes the incomplete beta function ratio, i.e., the cdf

of the beta distribution with parameters a and b. The pdf corresponding to (8) is given as

f(x) =
1

B(a, b)

(
1− e−λ

G(x;ξ)

Ḡ(x;ξ)

)α(a−1) {
1−

(
1− e−λ

G(x;ξ)

Ḡ(x;ξ)

)α}b−1

× αλg(x; ξ)

Ḡ(x; ξ)2
e
−λG(x;ξ)

Ḡ(x;ξ)

(
1− e−λ

G(x;ξ)

Ḡ(x,ξ)

)α−1
,

which reduces to

f(x) =
αλ

B(a, b)

g(x; ξ)

Ḡ(x; ξ)2
e
−λG(x;ξ)

Ḡ(x;ξ)

(
1− e−λ

G(x;ξ)

Ḡ(x;ξ)

)αa−1 {
1−

(
1− e−λ

G(x;ξ)

Ḡ(x;ξ)

)α}b−1

, x > 0, (10)

which can be expressed in mixture form in terms of cdfs of the GE distributions as

f(x) =
αλ

B(a, b)

g(x; ξ)

Ḡ(x; ξ)2
e
−λG(x;ξ)

Ḡ(x;ξ)Gλ,αa−1

(
G(x; ξ)

Ḡ(x, ξ)

){
1−Gλ,α

(
G(x; ξ)

Ḡ(x, ξ)

)}b−1

, (11)

where Gλ,α
(
G(x)
Ḡ(x)

)
=
(

1− e−λ
G(x)

Ḡ(x)

)α
is the cdf of Generalized exponential distribution with parameter λ

and power parameter α > 0.
The following are some existing members of BOGE family of distribution:

(1) When α = a = b = 1 and G = x
1+x , the BOGE reduces to exponential distribution.

(2) When a = b = 1, the BOGE reduces to the OGE family of distribution by Tahir et al (2015).
(3) When G = x

1+x , the BOGE reduces to the BGE distribution by Barreto-Souza et al (2010).
(4) WhenG = x

1+x and α = 1, the BOGE reduces to the BE distribution by Nadarajah and Kotz (2005).

The hazard rate function of the BOGE family of distribution is given by

h(x) =
αλg(x; ξ)e

−λG(x;ξ)

Ḡ(x;ξ)

(
1− e−λ

G(x;ξ)

Ḡ(x;ξ)

)αa−1 {
1− (1− e−λ

G(x;ξ)

Ḡ(x;ξ) )α
}b−1

B(a, b)Ḡ(x; ξ)2I
1−

(
1−e−λ

G(x;ξ)
Ḡ(x,ξ)

)α(a, b)
(12)

http://www.srg-uniben.org/



Beta-odd generalized exponential family ... 44

To test the validity of the pdf, we use the fact that∫ ∞
0

f(x)dx = 1 (13)

substituting the pdf (10) into equation (13) gives∫ ∞
0

f(x)dx =

∫ ∞
0

αλ

B(a, b)

g(x; ξ)

[Ḡ(x; ξ)]2
e
−λG(x;ξ)

Ḡ(x;ξ)

(
1− e−λ

G(x;ξ)

Ḡ(x;ξ)

)αa−1 {
1−

(
1− e−λ

G(x;ξ)

Ḡ(x;ξ)

)α}b−1

dx.

(14)
Let u = 1− e−λ

G(x;ξ)

Ḡ(x;ξ) , then dx = [Ḡ(x;ξ)]2

λg(x)e
−λG(x;ξ)

Ḡ(x;ξ)

du. We have

∫ ∞
0

f(x)dx =

∫ ∞
0

αλ

B(a, b)

g(x; ξ)

[Ḡ(x; ξ)]2
e
−λG(x;ξ)

Ḡ(x;ξ)uαa−1 (1− uα)b−1 [Ḡ(x; ξ)]2

λg(x; ξ)e
−λG(x;ξ)

Ḡ(x;ξ)

du. (15)

which gives ∫ ∞
0

f(x)dx =
α

B(a, b)

∫ 1

0
uαa−1(1− uα)b−1du (16)

We then let v = uα, then du = dv
αuα−1∫ ∞

0
f(x)dx =

α

B(a, b)

∫ 1

0
uαa−1(1− v)b−1 dv

αuα−1

=
1

B(a, b)

∫ 1

0
uαa−α(1− v)b−1dv

=
1

B(a, b)

∫ 1

0
uα(a−1)(1− v)b−1dv

=
1

B(a, b)

∫ 1

0
va−1(1− v)b−1dv

=
1

B(a, b)
B(a, b) = 1.

(17)

This gives the validation of BOGE as pdf.

3.1 Special cases of BOGE distribution.

In this subsection, we present some special cases of the BOGE family of distribution namely the Beta
odd generalized exponential - Half logistic (BOGE - HL), Beta odd generalized exponential - Exponen-
tial (BOGE-E) and Beta odd generalized exponential - Uniform (BOGE-U) distributions which are very
useful in solving various problems in practical applications in the fields of sciences and applied sciences.

3.1.1 The BOGE - half logistic (BOGE-HL) distribution.

The Beta odd generalized exponential - Half logistic (BOGE-HL) distribution is obtained by choosing the
baseline cdf and pdf in (8) and (10) to be the Half logistic distribution defined by G(x) = (1−e−x)

(1+e−x) and

g(x) = 2e−x

(1+e−x)2 respectively. For x > 0 and parameters α, λ, a, b > 0, the cdf and pdf of the BOGE-HL
distribution are given respectively by

F (x;α, λ, a, b) =
1

B(a, b)

∫ (
1−e−λ(

ex−1
2 )

)α
0

wa−1(1− w)b−1dw (18)
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f(x;α, λ, a, b) =
αλex−λ(

ex−1

2 )

2B(a, b)

(
1− e−λ(

ex−1

2 )
)αa−1 {

1−
(

1− e−λ
ex−1

2

)α}b−1
(19)

Figures 1 – 3 display, respectively, the plots of the pdf, cdf and hrf of the BOGE-HL distribution for some
selected parameter values.
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Figure 1: Fitted pdf of the BOGE-HL for some selected values

3.1.2 The BOGE - Exponential (BOGE-E) distribution.

The Beta Odd Generalized Exponential - Exponential (BOGE-E) distribution is obtained by choosing the
baseline cdf and pdf in (8) and (10) to be the exponential distribution defined by G(x; θ) = 1 − e−θx and

Figure 2: Fitted cdf of the BOGE-HL for some selected values
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Figure 3: Fitted hrf of the BOGE-HL for some selected values

Figure 4: Fitted pdf of the BOGE-E for some selected values

g(x; θ) = θe−θx respectively. For x > 0 and parameters α, λ, θ, a, b > 0, the cdf and pdf of the BOGE-E
distribution are given respectively by

F (x;α, λ, θ, a, b) =
1

B(a, b)

∫ (
1−e−λ(eθx−1)

)α
0

wa−1(1− w)b−1dw, (20)

f(x;α, λ, θ, a, b) =
αλθeθx

B(a, b)
e−λ(eθx−1)

(
1− e−λ(eθx−1)

)αa−1 {
1−

(
1− e−λ(eθx−1)

)α}b−1
(21)

Figure 4 displays the plot of the pdf of the BOGE-E distribution for some selected parameter values.

3.2 Expression of the BOGE distribution in the form of series

We provide a series representation of the BOGE distribution based on certain conditions.
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LEMMA 3.1 The pdf of the BOGE family of distributions can be express as the density function of the
exponentiated distribution as

f(x) =

∞∑
i,j=0

∞∑
k,l=0

%(i,j,k,l)g
∗(x; k + l + 1, ζ) (22)

where

%(i,j,k,l) =

(
b− 1

i

)(
α(a+ i)− 1

j

)(
−(k + 2)

l

)
α(−1)i+j+k+lλk+1(j + 1)k

B(a, b)k!(k + l + 1)

and g∗(x; k + l + 1, ζ) is the density of exponentiated G(x; ζ) to the power of k + l + 1.

Proof. First for |z| < 1 and for a > 0 real and non-integer, we have the series expansion of (1− z)a−1 as

(1− z)a−1 =

∞∑
j=0

(−1)jΓ(a)

Γ(a− j)j!
zj =

∞∑
j=0

(
a− 1

j

)
(−1)jzj . (23)

Applying the series expansion in (23) and the exponential expansion into equation (10), we arrive at

f(x) =

∞∑
i,j=0

∞∑
k,l=0

(
b− 1

i

)(
α(a+ i)− 1

j

)(
−(k + 2)

l

)
α(−1)i+j+k+lλk+1(j + 1)k

B(a, b)k!(k + l + 1)
g∗(x; k + l + 1, ζ)

(24)
and finally we arrive at

f(x) =

∞∑
i,j=0

∞∑
k,l=0

%(i,j,k,l)g
∗(x; k + l + 1, ζ) (25)

�

4. Some properties of the BOGE distribution

Some important properties of the BOGE distribution are going to be presented in this section

4.1 Quantile

The quantile function is a useful measure for describing the distribution of a random variable. It plays a key
role when simulating random numbers and can also be used to compute the median, kurtosis and skewness
of the distribution of a random variable. The quantile function of the BOGE family of distribution is obtained
by inverting F (x) = u, where F (x) is the cdf of the BOGE family of distribution given by equation (9), and
u to be a uniform variate on the interval [0, 1]. That is we solve a solution to the equation given by

I(
1−e−λ

G(x;ξ)
Ḡ(x;ξ)

)α(a, b) = u, (26)

taking the inverse of the incomplete beta function ratio and then the logarithm, we get

G(x; ξ) =
− 1
λ log

(
1− [I−1

u (a, b)]
1

α

)
1− 1

λ log
(

1− [I−1
u (a, b)]

1

α

) , (27)
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consequently

Q(u) = G−1

 − 1
λ log

(
1− [I−1

u (a, b)]
1

α

)
1− 1

λ log
(

1− [I−1
u (a, b)]

1

α

)
 (28)

which is the quantile function of the BOGE family of distributions.

4.2 Moment

It is imperative to derive the moments when a new distribution is proposed. They play a significant role in sta-
tistical analysis, particularly in applications. Moments are used in computing measures of central tendency,
dispersion and shapes among others.

PROPOSITION 4.1 The rth non-central moment of the BOGE family of distribution is given by

E(Xr) =

∞∑
i,j=0

∞∑
k,l=0

%(i,j,k,l)E(Y r
e ) (29)

where E(Y r
e ) is the rth moment of the exponentiated G(x; ζ) distribution with power parameter k + l + 1.

Proof. For a random variable X ∼ BOGE(ξ), the rth moment of X is obtained from the relation

E(Xr) =

∫ ∞
0

xrf(x)dx. (30)

Substituting equation (22) into equation (30), we have

E(Xr) =

∞∑
i,j=0

∞∑
k,l=0

%(i,j,k,l)E(Y r
e ), (31)

which is the non-central moment of the BOGE family of distribution. �

4.3 Moment generating function

The moment generating function (mgf) of the BOGE distribution can be computed from

MX(t) =

∞∑
r=0

tr

r!
E(Xr), (32)

substituting (31) in (32) gives

MX(t) =

∞∑
i,j,k=0

∞∑
l,r=0

tr

r!
%(i,j,k,l)E(Y r

e ), (33)

which is the mgf of the BOGE distribution.

5. Order statistics

In statistical theory and applications, the order statistic is one of the most essential fundamental tools. In order
to derive the distribution of the ith order statistics from the BOGE family distribution, letX1, X2, · · · , Xn be
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independently and identically distributed (iid) random variables from the BOGE pdf, f(x) and X1 < X2 <
· · · < Xn to denote the corresponding order statistics. The pdf fi:n(x) of the ith order statistic is given by

fi:n(x) =
1

B(i, n− i+ 1)
f(x)[F (x)]i−1[1− F (x)]n−i, (34)

fi:n(x) =

n−i∑
p=0

(−1)pn!

(i− 1)!(n− i− p)!p!
f(x)[F (x)]p+i−1. (35)

Substituting the closed forms of the cdf F (x) and the pdf f(x) equations (9) and (22), respectively, into (35)
and some algebraic manipulations we arrive at

fi:n(x) =

n−i∑
p=0

∞∑
i,j=0

∞∑
k,l=0

%(i,j,k,l,p)g
∗(x; k + l + 1, ζ)

[
I(

1−e−λ
G(x;ξ)
Ḡ(x;ξ)

)α (a, b)

]p+i−1

(36)

which is the distribution of the order statistics, where

%(i,j,k,l,p) =

(
b− 1

i

)(
α(a+ i)− 1

j

)(
−(k + 2)

l

)
αλk+1(−1)i+j+k+l+p(j + 1)kn!

B(a, b)k!(i− 1)!(n− i− p)!p!

6. Estimation

In this section, we estimate the unknown parameters of the BOGE family of distribution by the method of
maximum likelihood estimation. Let X1, X2, · · · , Xn be a random sample each from the BOGE family of
distributions as defined in (10) of size n independently and identically distributed random variables with
parameters α, λ, a, b and ξ with observed values x1, x2, · · · , xn. Let θ = (α, λ, a, b, ξT )T be a (p + 4) × 1
parameter vector, where ξ is a (p×1) baseline parameter vector. For determining the MLE of θ, the likelihood
function L(θ) is given by

L(θ) =

n∏
i=1

f(xi) =

n∏
i=1

[
αλ

B(a, b)

g(xi; ξ)

Ḡ(xi; ξ)2
e−λH(xi;ξ)

(
1− e−λH(xi;ξ)

)αa−1 {
1−

(
1− e−λH(xi;ξ)

)α}b−1
]

=
αnλn

(B(a, b))n

n∏
i=1

[
g(xi; ξ)

Ḡ(xi; ξ)2
e−λH(xi;ξ)

(
1− e−λH(xi;ξ)

)αa−1 {
1−

(
1− e−λH(xi;ξ)

)α}b−1
]
.

Taking the log of the likelihood function L(θ), we have

logL(θ) =n logα+ n log λ− n logB(a, b) +

n∏
i=1

[
log g(xi, ξ)− 2 log Ḡ(xi, ξ)

]
+

n∏
i=1

[
−λH(xi, ξ) + (αa− 1) log

(
1− e−λH(xi;ξ)

)
+ (b− 1) log

{
1−

(
1− e−λH(xi;ξ)

)α}]
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Let

` = logL(θ) =n logα+ n log λ− n logB(a, b) +

n∑
i=1

log g(xi, ξ)− 2

n∑
i=1

log Ḡ(xi, ξ)− λ
n∑
i=1

H(xi, ξ)

+ (αa− 1)

n∑
i=1

log
(

1− e−λH(xi;ξ)
)

+ (b− 1)

n∑
i=1

log
{

1−
(

1− e−λH(xi;ξ)
)α}

(37)

where H(xi; ξ) = G(xi;ξ)
Ḡ(xi;ξ)

. The components of the score vector, U(θ) = ∂`
∂θ =

(
∂`
∂α ,

∂`
∂λ ,

∂`
∂a ,

∂`
∂b ,

∂`
∂ξ

)T
, are

given by

Uα =
∂`

∂α
=
n

α
+ a

n∑
i=1

log(1− zi) + (b− 1)

n∑
i=1

(1− zi)α log (1− zi)
1− (1− zi)α

Uλ =
∂`

∂λ
=
n

λ
−

n∑
i=1

H(xi; ξ) + (αa− 1)

n∑
i=1

H(xi; ξ)zi
(1− zi)

+ α(b− 1)

n∑
i=1

(1− zi)α−1H(xi; ξ)zi
1− (1− zi)α

Ua =
∂`

∂a
=n [Ψ(a+ b)−Ψ(a)] + α

n∑
i=1

log(1− zi)

Ub =
∂`

∂b
=n [Ψ(a+ b)−Ψ(b)] +

n∑
i=1

log {1− (1− zi)α}

Uξ =
∂`

∂ξ
=

n∑
i=1

g′(xi; ξ)

g(xi; ξ)
− 2

n∑
i=1

G′(xi; ξ)

G(xi; ξ)
− λ

n∑
i=1

H ′(xi; ξ) + (αa− 1)

n∑
i=1

λH ′(xi; ξ)

1− zi

− αλ(b− 1)

n∑
i=1

(1− zi)α−1H ′(xi; ξ)zi
1− (1− zi)α

where zi = e−λH(xi;ξ), g′(xi; ξ) = ∂g(xi;ξ)
∂ξ and G′(xi; ξ) = ∂G(xi;ξ)

∂ξ . Setting the non linear system of
equations Uλ = Uα = Ua = Ub = Uξ = 0 and solving them simultaneously yields the the MLE
θ̂ = (α̂, λ̂, â, b̂, ξ̂T )T . To solve these equations, it is usually more convenient to use non linear optimiza-
tion methods such as the quasi-Newton algorithm to numerically maximize `.

7. Application

In this section, we present the application of the BOGE distribution using two real data sets. For comparison,
we fitted the first data set with the BOGE-HL distribution and for the second data we fitted the BOGE-E
distribution.

7.1 Glass Fibres Data

The data set is obtained from Smith and Naylor (1987) and recently Maiti and Pramanik (2015) fitted the
data for the Odds Generalized Exponential - Exponential Distribution. The data consists of 63 observations
of the strengths of 1.5cm glass fibres, measured at the National Physical Laboratory, England. Unfortunately,
the units of the measurement are not given in the paper. The data set is given in Table 1.

Table 2 shows the maximum likelihood estimates (MLEs) associated to each distribution fitted to the
dataset. It also shows the log-likelihood `, the AIC and the BIC for each model. The AIC and the BIC of the
BOGE-HL can be seen to be lower when compared to Beta generalized exponential (BGE), Odd generalized
weibull (OE-W), Odd exponential normal (OE-N), Odd generalized exponential half logistic (OGE-HL),
Beta exponential (BE), Generalized exponential (GE) and exponential (E) distributions, indicating that the
BOGE-HL outperforms all the other models for fitting the dataset.

http://www.srg-uniben.org/



51 Umar & Zakari

Table 1: Glass Fibres Data

0.55 0.93 1.25 1.36 1.49 1.52 1.58 1.61 1.64 1.68 1.73 1.81 2.00
0.74 1.04 1.27 1.39 1.49 1.53 1.59 1.61 1.66 1.68 1.76 1.82 2.01
0.77 1.11 1.28 1.42 1.50 1.54 1.60 1.62 1.66 1.69 1.76 1.84 2.24
0.81 1.13 1.29 1.48 1.50 1.55 1.61 1.62 1.66 1.70 1.77 1.84 0.84
1.24 1.30 1.48 1.51 1.55 1.61 1.63 1.67 1.70 1.78 1.89

Table 2: MLEs, `, AIC and BIC for the first data

Model α λ a b β ` AIC BIC
BOGE-HL 6.3051 0.3710 0.5496 23.5593 - -14.1725 36.5448 45.1173
OGEED 3.6474 0.0024 - - - -14.8100 36.6160 40.9760

BGE 22.6124 0.92271 0.4125 93.4655 - -15.5995 39.1990 47.7715
OE - W - 0.0721 - - 1.9603 -16.4613 36.9227 41.2088
OE - N - 0.0121 - - 0.7385 -17.5979 39.1958 43.4820

OGE - HL 1.3840 7.3084 - - - -19.9672 43.93442 48.22069
BE - 0.3898 17.7706 22.7222 - -24.1270 54.2540 60.6834
GE 31.3032 2.6105 - - - -31.3834 66.7668 71.0531
E - 0.644 - - - -88.8300 179.660 181.8031

Figure 5 illustrates the histogram for the data set and the fitted BOGE-HL distribution. The R code used
in computing the estimates and log-likelihood function is given in Appendix A.

Figure 5: Fitted pdf of the BOGE-HL for the first data

7.2 Precipitation Data

The data was first reported by Hinkley (1977) and consists of 30 observations of March precipitation (in
inches) in Minneapolis/ St Paul. Nasiru (2018) fitted the data for the New Exponentiated Generalized Modi-
fied Inverse Rayleigh (NEGMIR). The data set is given in Table 3.

Table 4 shows the maximum likelihood estimates (MLEs) associated to each distribution fitted to the
dataset. It also shows the log-likelihood `, the AIC and the BIC for each model. The AIC and the BIC of
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Table 3: Precipitation Data

0.77 1.74 0.81 1.20 1.95 1.20 0.47 1.43 3.37 2.20
3.00 3.09 1.51 2.10 0.52 1.62 1.31 0.32 0.59 0.81
2.81 1.87 1.18 1.35 4.75 2.48 0.96 1.89 0.90 2.05

the BOGE-E can be seen to be lower when compared to New Exponentiated Generalized Modified Inverse
Rayleigh (NEGMIR) Distribution, Exponentiated Generalized Modified Inverse Rayleigh (EGMIR), New
exponential Generalized Inverse Rayleigh (NEGIR) and New exponential Generalized Inverse Exponential
(NEGIE), indicating that the BOGE-E outperforms all the other models for fitting the dataset.

Table 4: MLEs, `, AIC and BIC for the second data

Model α λ θ a b ` AIC BIC
BOGE-E 0.322 4.929 0.018 14.082 13.380 -37.040 84.079 91.085
NEGMIR 3.022 0.225 2.246 0.112 24.039 -37.870 85.738 92.744
EGMIR 1.658 - 2.918 0.235 1.877 -42.750 93.492 99.097
NEGIR - 0.087 1.305 0.219 10.813 -40.210 88.421 94.025
NEGIE 9.708 8.228 - 0.258 0.092 -40.460 88.912 94.517

Figure 6 illustrates the histogram for the data set and the fitted BOGE-E distribution.

Figure 6: Fitted pdf of the BOGE-E for the second data

8. Conclusion

In this research work, we introduced a four parameter family of distribution known as the Beta-Odd Gener-
alized Exponential (BOGE) family of distribution. It generates by choosing the baseline distribution of the
Beta-G distribution to be the Odd Generalized Exponential (OGE) family of distribution. Properties of the
proposed distribution such as the quantile function, hazard rate function, moment, moment generating func-
tion and order statistics were derived and the maximum likelihood estimation method was used for estimating
the parameters.
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Appendix A

R codes for computing the likelihood function, maximum likelihood estimates, AIC and BIC for the first data set.

datta<-c(0.55, 0.93, 1.25, 1.36, 1.49, 1.52, 1.58, 1.61, 1.64, 1.68, 1.73,
1.81, 2.00, 0.74, 1.04, 1.27, 1.39, 1.49, 1.53, 1.59, 1.61, 1.66, 1.68, 1.76,
1.82, 2.01, 0.77, 1.11, 1.28, 1.42, 1.50, 1.54, 1.60, 1.62, 1.66, 1.69, 1.76,
1.84, 2.24, 0.81, 1.13, 1.29, 1.48, 1.50, 1.55, 1.61, 1.62, 1.66, 1.70, 1.77,
1.84, 0.84, 1.24, 1.30, 1.48, 1.51, 1.55, 1.61, 1.63, 1.67, 1.70, 1.78, 1.89)

BOGE-HL
RRc<-function(theta,datta){
x<-datta
alpha<-theta[1]
lambda<-theta[2]
a<-theta[3]
b<-theta[4]
betta<- beta(a,b)
suv<-2*exp(-x)/(1+exp(-x))
odd<-(exp(x)-1)/2
g<-(2*exp(-x))/(1+exp(-x))ˆ2
c12<-alpha*lambda*(2*betta)ˆ(-1)
c22<-exp(x-lambda*odd)
c32<-(1-exp(-lambda*odd))ˆ(alpha*a-1)
c42<-(1-(1-exp(-lambda*odd))ˆ(alpha))ˆ(b-1)
fddhl<-c12*c22*c32*c42
RRc<--sum(log(fddhl))
RRc
}
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dd<-nlminb(start=c(0.001,0.1,0.01,.1),RRc,lower=c(0,0,0,0),
upper=c(Inf,Inf,Inf,Inf),datta=datta)
dd
===========================================================
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