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Abstract. Data obtained from observations collected sequentially over time are ex-
tremely common in business, agriculture, manufacturing, biological science, mete-
orology and virtually endless. Box-Jenkins methodology have been severally used
to obtain forecasts through the process of identification, estimation and diagnostics
checks. This study employed the use of time series filters to improve or obtain more
quality forecasts by the modification of the Box-Jenkins forecasting approach. This
study used the Nigerian Naira versus the US Dollar exchange rates data (4th Jan-
uary, 2010 to 17th September, 2019) to demonstrate the tool of time series filters
to improve or obtain more quality forecasts. The study identified and reviewed two
band-pass filters (Baxter-King Filter and Christiano-Fitzgerald Filter) designed for
use in a wide range of economic applications. The classical forecasting technique
of Box and Jenkins approach based on ARIMA model was also used to forecast
the exchange rates. The results show that the use of Baxter-King filter ARIMA
performed better than the Christiano-Fitzgerald filter and the classical Box-Jenkins
forecasting ARIMA models. The forecast results indicate that the Nigerian econ-
omy within the sampled period did not conform to the theory behind ARIMA
models for forecasting future exchange rates.
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1. Introduction

Data obtained from observations collected sequentially over time are extremely
common in many areas of endeavour. In business, examples are weekly interest
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rates, daily closing stock prices, monthly price indices, yearly sales figures, and
so forth. In meteorology, examples include daily high and low temperatures,
annual precipitation and drought indices, and hourly wind speeds. In agricul-
ture, record annual figures for crop and livestock production, soil erosion, and
export sales. In the biological sciences, observations are made of the electrical
activity of the heart at milli-second intervals. In ecology, records of the abun-
dance of an animal species (Cryer and Chan, 2008). The general ARIMA model
for non-stationary series introduced by Box and Jenkins (1976) follows some
practical steps which include identification, estimation, diagnostic checking and
forecasting in capturing the empirical regularities of real life situations. Fitting
non-stationary time series to statistical models can be challenging. As part of
the identification stage of Box and Jenkins methodology, smoothing can be ap-
plied using time series filters. Smoothing is usually done to help us better see
patterns or trends in time series. The term filter is sometimes used to describe a
smoothing procedure. A band-pass filter will remove both high frequencies and
low frequencies of a time series and leave only frequencies in a band in the mid-
dle (Nilsson and Gyomai, 2011). Band-pass filters tend to make even noise-look
periodic, or at least quasi-periodic. Thus, filtering time or space series is such
that certain frequencies or wave-numbers are removed and some are retained.
That is, a method of accentuating certain frequencies and removing others.
The Christiano-Fitzgerald (CF) random walk filter is a band-pass filter that
was built on the same principles as the Baxter and King (BK) filter. These
filters formulate the de-trending and smoothing problem in the frequency do-
main. Given a continuous and/or infinitely long time series the frequency fil-
tering could be an exact procedure. However, the granularity and finiteness of
real life time series do not allow for perfect frequency filtering. Both the BK
and CF filters approximate the ideal infinite band-pass filter. Box, et al. (2008)
assume that the time series can be split into a sum of some deterministic com-
ponents: seasonal oscillation, linear trend and a stochastic error term by the
means of wavelet transform. That is, one can decompose a time series into a
linear combination of different frequencies. Pre-filtering is a common practice
for empirical analyses in economics to extract relevant information from eco-
nomic data as accurately as possible. Particularly in macroeconomics, it attracts
a great concern to identify trends and cyclical components in time series. For
example, a trend component is used as an approximation to the potential output.
Common studies in this regards includes Baxter and King (1999), Hodrick and
Prescott (1999), Mills (1999), Box, et al. (2008) and Florian (2011). In contrast,
cyclical components may approximate the business cycle, and are used to in-
vestigate the statistical validity of the real business cycle models, as done by
Chatfield (1978). Also, seasonal effects may blur relations between economic
variables, as such seasonally-adjusted series might be relevant for economic
analyses. Ekhosuehi and Ogbonmwan (2014) determine the exchange rate by
solving an optimal control problem wherein the objective is to maximize the
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balance-of-payments and the domestic interest rate are under statistical control.

A standard modelling approach for data sets with outliers is to describe ex-
treme observations by means of heavy-tailed distributions. There is a vast lit-
erature on modelling continuous-valued time series with heavy-tailed distribu-
tions. Amongst are: Gorgi (2020) who discussed Beta-negative binomial au-
toregressions for modelling integer-valued time series with extreme observa-
tions. Chen et al. (2019) have discussed the estimation of integer-valued au-
toregressive models and binomial autoregressive models that are contaminated
with innovational and additive outliers. Hall (2001, 2003) derived the extremal
index of integer-valued moving averages. Scotto et al. (2018) studied the prop-
erties of a first-order max-integer-valued autoregressive model. Zhu et al. (2015)
considered influence analysis of outliers for integer-valued generalized autore-
gressive conditional heteroscedastic INGARCH) models. Importantly, Qian et
al. (2020) gave their contributions on the first-order integer-valued autoregres-
sive model. A widely used approach is the classical forecasting autoregressive
integrated moving average (ARIMA) model which captures inter-temporal lin-
ear dependence in the data itself as well as in the error term. Existing trends
are treated by modelling not the data but the differences which is then called
ARIMA model (see Box, et al. (2008)).

This paper identified and reviewed two band-pass filters applied to improve
the Box-Jenkins methodology. The identified band-pass time series filters that
are useful for smoothing and extracting trend and cyclical components of a time
series are Baxter-King Filter and Christiano-Fitzgerald Filter. The aim of this
study is to apply the time series filters separately to recent economic data in the
identification stage of Box-Jenkins methodology with a view to obtain optimum
forecasts in comparison to the classical Box-Jenkins methodology. To check
for the optimization of the forecasts generated using the respective time series
filters, diagnostic tools of the in—sample error measures are used. The Box and
Jenkins approach (ARIMA) model was used separately to forecast the Nigeria
Naira versus United States Dollar exchange rates. Then the Baxter-King Filter
and Christiano-Fitzgerald Filter were used to filter the data before applying the
Box and Jenkins approach (ARIMA) model. The filters decomposed the data
into trend and cycles. The filtered data using BK and CF, and the raw data were
modelled by the ARIMA models to compare their model performances.

2. Methodology

2.1 Filtration and decomposition of time series

Time series decomposition is a mathematical procedure which transforms a time
series into multiple different time series. Time series decomposition is a pattern-
based technique (Nau, 2014). The four main components of time series data are
trend, seasonality, cyclic and irregularity. Using band-pass filters, certain accen-
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tuating frequencies or wave-numbers are removed and some are retained in the
process of filtering and decomposition. Thus, both filtering and decomposition
are geared towards improving forecasts estimation.

Given a time series {xt}tT:l, x+ that may be decomposed into:
Te =Y + T (1)

where y; 1s the isolated component from x;. y; oscillates between pi and pu
(perceived usefulness), 2 < pi < pu < oco. The component y; is assumed to
have power only in the frequencies in the interval. In situations where z; data
are of infinite length,

Y = B(L)xy (2)

where B(L) is the lag operator defined as:

B(L)= Y  B;LJ 3)
Jj=—00
Lrey = g (4)

The ideal band-pass filter weights are given by

B, — sin(jb)W—js,in(ja)7 5)

where a = 27 /pu and b = 27 /pi. The finite sample approximation to the ideal
band-pass filter uses the alternative filter

o0
yr = B(L)xy = Z By jwit (6)

j=—00

where B, ; is a solution to By j = argmin {(y: — §)}.

2.2 Baxter-King Filter

The Baxter-King filter is intended to explicitly deal with the periodicity of the
business cycle. The band-pass filters designed for use in a wide range of eco-
nomic applications. This filter detrends’ the data, in the sense that it will render
stationary time series that are integrated of order two or less, or that contain
deterministic time trends (Baxter and King, 1999). By applying their band-pass
filter to a series, they produce a new series that does not contain fluctuations
at higher or lower than those of the business cycle. The Baxter-King filter is
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a finite data approximation to the ideal band-pass filter with following moving
average weights:

n n
yr = B(L)xy = Z By jwisj = Boay + Z By(i—j + 1), (7)
P =1
1 n
Bj:Bj_2n+1 Z B;. (&)
j=-n

2.3 Christiano-Fitzgerald Filter (CF)

The Christiano-Fitzgerald filter i1s a generalization of Baxter-King filter and
can thus also be seen as weighted moving average. However, the CF filter is
asymmetric about t as well as using the entire series. The Christiano-Fitzgerald
Iter computes cyclical and trend components of the time series using several
band-pass approximation strategies to the ideal band-pass lter and minimizes
the mean squared error dened in the equation:

B;j = arg min E {(ye — 90)*} - 9)

In the R package according to Shumway and Stoffer (2006), the default is theta
= 1 (i.i.d. series). If theta= (01,05, - - - ), then the series is assumed to be

Ty = M-+—erOtxt—1'+'91€t%—92€t_1-+"' ) (10)

where 1ot = 1 1f the option root = 1 and 150t = 0 if the option root = 0, e;
is a white noise. If drift in time series is evident (i.e. if drift = TRUE), the drift
adjusted series is obtained as

rT — X1
T—1

:?:t:xt—t( ) t=01,2,--- T—1, 11

where 7; 1s the undrifted series.

2.4 The Box and Jenkins approach

The approach starts with the assumption that the process that generated the
time series can be approximated using an ARMA model if it is stationary or an
ARIMA model if it is non-stationary. The process is a stochastic model building
and an iterative approach that consists of the following steps make an ARIMA
forecast model are model identification, estimation, model diagnostics and fore-
casting.
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(1) Model Identification: This is to identify the order of differencing (d) and
choosing plausible values of p and ¢ to identify the parameters of an
ARMA model for the data. Differencing was adopted for the identification
of p and ¢ using the autocorrelation function (ACF) and partial autocorre-
lation function (PACF). If the data are stationary, the ACF should decay to
zero fairly rapidly. Otherwise, differencing the series a second time may
be necessary for a seasonal component. A random walk without drift is
a process where the dependent variable can be estimated on one lagged
period of itself plus an error term, assumed to be white noise, known as a
random shock. The mean is constant over time in a random walk without
drift, however, the variance is increasing indefinitely over time, making it
a nonstationary stochastic process.

Random walk without drift: X; = X;_1 + uy. (12)

Similarly, a random walk with drift is a process where the variable is
dependent on its own lagged values and a random shock. However, the
model that may be used to estimate a random walk with drift includes
an intercept known as the drift parameter, denoted by o. This parameter
indicates if the time series is trending upwards or downwards, depending
on whether ¢ is positive or negative. A random walk with drift is a non-
stationary stochastic process since the mean and variance are increasing
over time (Gujarati and Porter, 2008).

Random walk without drift: X; =0 + Xy—1 + . (13)

The general ARIM A(p,d,q) model introduced by Box and Jenkins
(1976) and Box et al. (2008) includes autoregressive and moving aver-
age parameters, and explicitly involves differencing in their formulation.
The general form of the ARIM A(p, d, q) process is of the form

¢p(B)(1 — B)'X; = 6y + 0,(B)e. (14)

where the autoregressive (AR) operator ¢, = (1 — ¢1B — --- — ¢, B) are
invertible while the moving average (MA) operator 6, = (1 —61B —--- —
0,B) are stationary. Both AR and MA share no common factors.
Exploratory results which include descriptive statistics and time plots,
among others, is used to determine the patterns, trends, cycles and sea-
sonality to check if the series is stationary or not. A further test called
Augmented Dickey Fuller test (ADF) is also used to determine whether
the series 1s stationary. The ADF tests the null hypothesis that the series is
non-stationary. If the P-value of the ADF test is above 0.05, it means that
the data is non-stationary. Hence, the need to difference the series until we
obtain a stationary time series. The differencing is called the integration
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(ii)

(111)

point in ARIMA which is the d parameter of the ARI M A(p, d, q) model.
Once a stationary time series 1s achieved, the next step is to select the ap-
propriate ARIMA model finding the most appropriate values for p and ¢
in the ARIM A(p, d, q) model.

Another method to test for stationarity is by computing the autocorrela-

tion function, also known as the ACF. The autocorrelation function is the
ratio between the covariance at a specific lag, generally expressed as lag
k, to the variance. At lag k, p;. denotes the ACF and is defined as follows;
P = 7i/7Y0, Where ~y, is the covariance at lag k and - is the variance.
The ACF can be plotted by using a ”‘correlogram™’. In the correlogram,
if all or most of the lags are statistically insignificant, there is no specific
pattern, constant variance, and the autocorrelations at various lags hovers
around zero, the time series could be regarded as stationary. This means
that a time series is most likely stationary if the ACF correlogram resem-
bles a white noise process.
Parameter Estimation: Estimation involves using numerical methods to
minimize a loss or error term. It involves the estimation of the parameters
of the models identified. In this paper, least squares method was adopted
to obtain optimal values. The idea of least squares estimation is to find
the parameters that minimize the sum of squared errors. Hence, the sum
of squared errors is given as

N
3
R
3

S=) ai=) | D Gajty—0- dwi| . (15

Diagnostic Checks and Performances Evaluation: The adequacy of a
model and its forecasting performance is evaluated using information
criteria and some diagnostics statistics. Akaike’s information criterion
(AIC) (1970) and Bayesian Information Criterion (BIC) (1978) are
information criteria that measures the goodness of fit of a model by
assigning an informational cost to the number of parameters to estimate.
Generally, a good model is obtained using the minimized values of the
AIC and BIC. Also forecasted results from the models can be tested
using any of the following statistics (error measures):

(a) The Root mean square error (RMSE) depends on the scale of
the dependent variable. It should be used as relative measure to compare
forecasts for the same series across different models. The smaller the
error, the better the forecasting ability of that model according to the
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RMSE criterion.

S+n
1

RMSE = | —— ; (Ge-1(1) — m)*. (16)

One problem associated with the use of the RMSE or similar measures
is the fact that the forecast error variance vary across time. It can vary
because of nonlinearities in the model and because of variation in
exogenous variables (if included in the model).

(b) Mean square error (MSE) measures the average squared differ-
ence between the forecast and actual values. The MSE mean squared
forecast error can be decomposed as

D@1 = p)* /n= (G = 9)° + (55 — 5)> + 21 = 1)ssy. (A7)

t=1

where § and § are the means of the forecast variable and of the true vari-
able, respectively. s; and s, are the standard deviations of the forecast
variable and of the true variable, respectively. r is the correlation between
y and the true variable y. The proportions are defined as follows: The bias
proportion

(9 — 9)
S (Ge—1(1) — ye)? /n

measures how far the mean of the forecast is from the mean of the actual
series. The variance proportion

(52) — Sy)2

Zt 1 (Ft—1( —yt) /n

measures how far the variance of the forecast is from the variance of the
actual series. The covariance proportion

2(1 —r )Sst
D1 (G- yi)? /n

measures the remaining unsystematic forecasting errors. If the forecast
is 'good’, the bias and the variance proportions should be small so that
most of the bias should be concentrated on the covariance proportions.

(c) The Mean absolute error (MAE) is dependent on the scale of
http://www.bjs-uniben.org/
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the dependent variable but it is less sensitive to large deviations than the
usual squared loss.

s+n

1
MAE = —— : 18
— ;Lut 1(1) = i (18)

One problem with the MAE is that the relative size of the error is not
always obvious. Sometimes it is hard to tell a big error from a small
error. To deal with this problem, we can find the mean absolute error in
percentage terms. Both RMSE and MAE are relative and scale dependent
i.e. should be used to compare forecasts of the same time series across
different forecasting models. The smaller the RMSE and MAE, the better
the forecasting performance of the model. The mean percentage error
(MPE) is the computed average of percentage errors by which forecasts
of a model differ from actual values of the quantity being forecast.

(d) The mean absolute percentage error (MAPE) is one of the most
widely used measures of forecast accuracy, due to its advantages of
scale-independency and interpretability. MAPE measures the (absolute)
size of each error in percentage terms, then averages all percentages. The
MAPE is scale independent given as

S+n

MAPE = Z

n+1 —

G—1(1) —w
Yt

(19)

MAPE allows us to compare forecasts of different series in different
scales but was criticized for the problem of asymmetry and instability
when the original value is small. MAPE as accuracy measure is affected
by the four problems: (i) Equal errors above the actual value result in
a greater absolute percentage error; (ii) Large percentage errors occur
when the value of the original series is small; (ii1) Outliers may distort
the comparisons in empirical studies; (iv) MAPEs cannot be compared
directly with naive models such as random walk.

(e) Theil’s U statistics or Theil’s coefficient of inequality is another
criterion that measures forecast accuracy. There are two Theil’s coeffi-
cients labeled as Theil U; and Theil Us coefficient.

1 s+n 1) — 2
b Vi S 1 () — ) o0

1 st+n A2 + s+n
n+1 t=s — n+1 t=s
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tn - 2
\/#1 i (G (1) — )
1 n 9 '
\/n_-|-1 Zf:g Y

Values closer to O for both, Theil’s U; and Us criteria, indicate better fore-
casting performance of the evaluated models; if Theil’s U; and U are
equal to zero than the forecast is perfect. Theil U; is bounded between 0
and 1, whereas Theil Us is not bounded.

Model verification can further be achieved by computing the residuals
from the fitted model to check that they are consistent with white noise.
The errors from an ideal model would resemble white noise that is, a
Gaussian distribution with a mean of zero and a symmetrical variance.

(iv) Forecasting: Forecasting is one of the main objectives of time series anal-
ysis. The forecasting errors are often included in the measurements and
two measurements that are based on the relative forecasting errors are the
mean percentage error and the mean absolute percentage error (Philip and
Hugo, 2020). A forecast “error” is the difference between an observed
value and its forecast, therefore we use the criterion of minimum mean
squared errors to produce point forecasts. Like other statistical forecasts,
there are two main sources of uncertainty involved. The first uncertainty is
concerned with “future” variables and the second is the uncertainty about
the model used. In wavelet-based forecasting, wavelets can be used to
improve the forecasting accuracy of the classical forecasting models like
the ARMA and its extension ARIMA models. (See Brockwell and Devis,
2002; Sue, 2009; Schluter and Deusche, 2010; Fat and Eva, 2011; Idrees
et al. 2019).

2 = 21

3. Results and Discussion

A 10-year historical data recorded daily from 4th January 2010 to 17th Septem-
ber 2019 of US Dollars to Nigeria Naira exchange rates data were collected
from Central Bank of Nigeria website (www.cbn.gov.ng). Its attributes include
buying price, central price and the selling price and contains a total of 2394
observations. The central price of the exchange rate was used for this paper.
Importantly, exchange rate influences decisions taken by the participants of the
foreign exchange market, namely investors, importers, exporters, bankers, fi-
nancial institutions, business, tourists and policy makers both in the developing
and developed world as well. Given the US Dollars to Nigerian Naira exchange
rates daily data (4th January, 2010 to 17th September, 2019), exploratory results
of the descriptive statistics and time plot are shown in Table 1 and Figure 1(a),
respectively. The minimum and maximum values for which naira was traded
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for dollar under the period considered are N147.1 and N324.5, respectively.
The mean exchange rate is N210.5. The sharp drop in the time plot seems to
suggest that while falling oil prices (2013-2014) would support activity and re-
duce inflation globally, Nigeria being an oil-exporting country, is under stress
as falling oil-related revenues put fiscal balances under pressure and exchange
rates depreciate on deteriorating growth prospects. Again, macroeconomic fun-
damentals and financial exposure of countries are found to have played a key
role in the transmission process of US shocks: in particular Nigeria with low
foreign exchange reserves, weak current account positions and high direct finan-
cial exposure vis-a-vis the United States have experienced substantially larger
currency depreciations during the crisis overall. The time plot also shows an ad-
ditive time series since the random fluctuations in the data are roughly constant
in size over time. Thus, indicating that the data set is non-stationary. A stochas-
tic process 1s weakly stationary if it has constant mean and variance and the
covariance is time invariant, i.e. the statistics do not change over time (Gujarati
and Porter 2008). The data set being an additive time series, seasonal fluctu-
ations or the variations around trend does not vary much with time as shown
in Figure 1(b) where the decomposition varies from trend, seasonal and ran-
dom. The observed part of the decomposed data further shows that the data is
non-stationary.

Table 1: Summary statistics of US Dollars to Nigerian Naira exchange rates

Min. Q1 Q2 [ Mean | Q3 Max.
Dollars to Naira
Exchange Rates | 147.1 | 155.2 | 156.6 | 210.5 | 305.1 | 324.5

Naira/Dollar exchange rates(4/1/2010—17/9/2019) Decomposition of additive time series

R
N

[T

i |
f

300
|
observed

250
|
trend

NAIRADOLLAR_EXTR

200
|
seasonal

If
il

150
|
random
40 20 0 20 <01 00 01 0250 200 250 300150 200 250 300

2010 2012 2014 2016 2018

Time Time

(a) (b)

Figure 1: (a) Time plot of Naira/USD exchange rate. (b) Plot of decomposed
Naira/Dollar exchange rate.

The Augmented Dickey-Fuller test based on the following test of hypotheses
(HO: Non-stationary series against H1: Stationary series) was used where if the
p-value of the ADF test is above 0.05, it means that the data is non-stationary.
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ADF test results indicate that the data gives a p-value of 0.8925 which supports
the null hypothesis in affirmation that the data is not stationary (Dickey-Fuller
= -1.258, lag order = 13, p-value = 0.8925). The plot of ACF (Figure 2) is

ACF plot of Naira/Dollar exchange rate PACF plot of Naira/Dollar exchange rate

ACF
Partial ACF

T T T T T T T T T T T T T T T
000 001 002 003 004 005 006 007 001 002 003 004 005 006 007

Lag Lag

Figure 2: Plot of ACF and PACF of non-stationary data

decreasing or decaying very slowly and remains well above the significance
range (dotted blue line). This is an indication that the series is a non-stationary
time series.

After the first differencing of the series, the ADF test gave results: Dickey-
Fuller = -22.33, lag order = 13, p-value = 0.01. The p-value of 0.01 supports
the acceptance of the alternative hypothesis indicating that the data set is now
stationary. Also the ACF and PACF confirm that the series is now stationary
as they deceased fast and spike after some lags indicating that ARMA model
should be tried as well (see Figure 3).

Using least squares method, the values of parameters were estimated for pos-
sible ARIMA (p, d, q) models with AIC to determine the best model among the
models (Table 2 and 3).

Table 2: Box-Jenkins ARIMA models

Model AIC
ARIMA(2,1,2) with drift | 9972.049
ARIMA(0,1,0) with drift | 9963.407
ARIMAC(1,1,0) with drift | 9966.329
ARIMAC(0,1,1) with drift | 9965.326
ARIMA(0,1,1) with drift | 9965.326

ARIMA(0,1,0) 0064.222
ARIMA(T,1,1) with drift | 9968.327

The ARIMA (0, 1, 0) with drift which is a random walk was found to be suit-
able for modelling the data. These results are consistent with the works of Nor
et al. (2013). The optimal out-of-sample forecast performance of the models is
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ACF plot of 1st order differencing PACF plot of 1st order differencing

ACF
Partial ACF

Q7 5
T T T T T T T T ? T T T T T T T
000 001 002 003 004 005 006 007 001 0.02 003 004 0.05 0.06 007

Lag Lag

Figure 3: ACF and PACEF plots of differenced data

g-\
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T T T T T
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Time

Figure 4: Stationary time plot of Naira/USD exchange rate (4/1/2010 —
17/9/2019)

measured in terms of the errors statistics of the selected ARIMA models fitted
to the data set and presented on Table 4. All the models appeared to be good but
the random walk model outperforms them as indicated by the Theil’s U coeffi-
cient in the case of the Naira/USD exchange rate. This is apparently consistent
with Meese and Rogoff (1983) who showed the superiority of the random walk
model in out-of-sample exchange rate forecast. However, the Theil’s U evalua-
tion statistic shows that the ARIMA (0, 1, 0) model outperforms other ARIMA
models and is therefore chosen as the best model. The ARIMA (0, 1, 0) with
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Table 3: Summary statistics of US Dollars to Nigerian Naira exchange rates

ARIMAC(0,1,0) with drift
Coefficients
Drift —0.0666

s.e. 0.0397, sigma/?2 estimated as 3.769, log-likelihood = -4980.37,
AIC =9963.407, AIC=9964.74, BIC = 9976.29.

Table 4: Summary statistics of US Dollars to Nigerian Naira exchange rates

Models AIC Thei’'sU| ME | RMSE | MAE | MPE | MAPE
ARIMA(2,1,2) [ 9972.049 | 1.1843 | 0.3537 | 1.9511 [ 1.2481 | 2.8077 | 9.5822
ARIMA(2,1,0) [ 9964.222 | 1.1854 | 0.5532 | 1.9849 | 1.2556 | 2.8094 | 9.6710
ARIMA(0,1,2) [ 9970.135 | 1.1886 | 0.6943 | 2.0357 | 1.3492 | 2.8175 | 9.8727
ARIMA(,1,0) [ 9966.329 | 1.0867 | 0.5796 | 1.8596 | 1.2857 | 2.7681 | 9.6971
ARIMA(O,1,1) [ 9965.326 | 1.0893 | 0.7354 | 2.0348 | 1.3598 | 2.7413 | 9.8946
ARIMA(0,1,0) | 9963.407 1 1.0864 | 1.9405 | 1.2212 | 2.5223 | 9.2543
ARIMA(,1,1) [ 9968.327 | 1.0852 | 0.3675 [ 1.9412 | 1.2341 | 2.6512 | 9.7461

drift was used to make a 226-point ahead forecast of Naira/USD exchange rate,
that is, between September 18, 2019 — April 30, 2020. The time axis label of the
time periods (in years) of 0, 500, 1000, 1500, 2000 and 2500 represent 2010,
2012, 2014, 2016, 2018 and the forecast 2500 represents 2020, respectively as
earlier seen in Figure 1. The forecast was at 80% and 95% confidence interval.
The forecast results for the model is as plotted in Figure 5. The Dark gray part

Forecasts from ARIMA(0,1,0) with drift

250 300
| |

Naira/Dollar
200
|

T T T T T T
0 500 1000 1500 2000 2500

Time

Figure 5: Plot of Box-Jenkins ARIMA with forecasts

of the plot is the 80% confidence interval, the light gray part is the 95% confi-
dence interval, and the blue line is the actual prediction. The forecast errors are
stored as “residuals” were noted for further analysis to check the pattern in the
residuals of the chosen model. The ACF, PACF and Q-Q plot of the residuals
for the ARIMA (0, 1, 0) model are given in Figure 6. As seen from the ACF and
PACEF plots for the ARIMA (0, 1, 0) residuals, almost all the correlations are
below the threshold limit. This means that the residuals are behaving like white
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Figure 6: ACF, PACEF, time plot and Q-Q-plot of ARIMA (0, 1, 0) residuals

noise and the residuals are distributed normally as testified by Q-Q plot, Figure
6.

There are 4 forecasts generated by a random walk (ARIMA (0, 1, 0)), an
ARIMA (1, 1, 0), an ARIMA (0, 1, 1), and a forecast generated by a model
selected based on BIC criterion. Table 5 presents the change of the values pro-
duced by the accuracy measures using the last 20 points. The first two ac-
curacy measures-MAPE and RMSE-produced very different values after the
transformation since they are not scale transformation invariant. The last ac-
curacy measure- Theil’s inequality coefficient-had some minor changes. This
suggested that the first two measures are generally not good for cross-series
comparison of forecasting procedures since a linear transformation of the origi-
nal series may change the ranking of the forecasts. Hence, in terms of forecast-
ing performance, the results in Table 5 indicate that ARIMA (0, 1, 0) is the best
among the ARIMA models considered, but both the original and new series of
this model are as good as the naive model. Analyzing the data with smoothing

Table 5: Comparison of different criteria after transformation y"“" =
10y0riginal _ 1Om6an(yoriginal)

Forecast [ ARIMA (0, 1,0) [ ARIMA (1,1,0) | ARIMA (0, 1,1) | ARIMA BIC
Series Original New | Original New | Original New | Original New
MAPE 0098 0327 0094 0331 0091 0321 0028 0406
RMSE 0618 6394 0625 6401 0610 6328 0756 7899

Theil’s Uy 1 1 1.029 1.029 1.092 1.092 1665 1574
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techniques, the Baxter-King filter (BKF) and Christiano-Fitzgerald Filter (CFF)
results of trends and cyclic components are presented in Figures 7 and 8. The
summary statistics are in Tables 6 and 7 for the BKF and CFF respectively.

Baxter-King Filter of NAIRA.DOLLAR_EXT R
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Figure 7: BK filter of Naira/ Dollar exchange rates of trend and cyclic compo-
nents

Table 6: Baxter-King filter decomposition of series into trend and cycle

Summary Statistics | Naira/USD Ex-Rate | Trend Cycle
Minimum 147.1 147.4 [ 32.74084
Ist Quarter 155.2 155.2 [ -0.00947
Median. 156.6 156.4 [ 0.00000
Mean. 210.5 210.4 [ 0.00003
3rd Quarter 305.1 305.1 [ 0.00930
Maximum 324.5 312.7 [ 31.06650

Table 7: Baxter-King filter decomposition of series into trend and cycle

Summary Statistics | Naira/USD Ex-Rate | Trend | Cycle
Minimum 147.1 64.79 [ -66.36

I'st Quarter 155.2 133.81 [ -40.10
Median. 156.6 205.93 [ 31.15
Mean. 210.5 189.75 [ 20.73

3rd Quarter 305.1 24391 [ 66.20
Maximum 324.5 320.77 | 140.27

3.1 Modelling the BK filtered data with ARIMA model

The BK filter decomposed the data into trend and cycles. Each of the two com-
ponents was modelled with ARIMA. The trend component of the filtration was
modelled with ARIMA (4, 1, 1) with zero mean, variance estimated as 0.01603,
log likelihood = 1548.47, AIC = 8082.93, BIC = 8145.49. While cyclic compo-
nent of decomposed data was modelled with ARIMA (0,0,2) with zero mean,
variance estimated as 1.166, log likelithood = -3570.36, AIC = 7146.71, BIC =
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Figure 8: CF filter of Naira/Dollars rate trend and cyclic component, respec-
tively

7164.05 (see Table 8 and 9). The model performance for the trend and cyclic
components based on BK Filter are presented on Tables 10 and 11 with the
value of MAPE having the value of infinity. However, we note that MAPE has
the significant disadvantage that it produces infinite or undefined values for zero
or close-to-zero actual values. This may be addressed using the mean arctan-
gent absolute percentage error (MAAPE) which is a slope as an angle, while
MAPE is a slope as a ratio by considering a triangle with adjacent and oppo-
site sides that are equal to an actual value and the difference between the actual
and forecast values, respectively. MAAPE inherently preserves the philosophy
of MAPE, overcoming the problem of division by zero by using bounded influ-
ences for outliers in a fundamental manner through considering the ratio as an
angle instead of a slope.

Table 8: ARIMA modelling of BKF trend component

Model AIC
ARIMA(2,1,2) with drift -2988.597
ARIMA(0,1,0) with drift 5711.006
ARIMA(1,1,0) with drift 1366.945
ARIMA(0,1,1) with drift 2659.154

ARIMAC(0,1,0) without drift | 5725.488
ARIMA(2,1,1) with dnift -2823.007
ARIMA(3,1,1) with drift 3074.304
ARIMA(4,1,2) with drift 8062.994
ARIMA(4,1,1) with drift 8082.932
ARIMA(4,1,0) with drift -2979.854
ARIMA(S,1,1) with drift Infinity
ARIMA(3,1,0) with drift -2807.641

3.2 Modelling of Christiano-Fitzgerald filtered data with ARIMA model

The CF filter also decomposed the data into trend and cycles. Each of the two
components was modelled with ARIMA. Based on the AIC, ARIMA (0, 1, 0),
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Table 9: ARIMA modelling of BKF cycle component

Model AIC
ARIMA(2,0,2) with non-zero mean | Infinity
ARIMA(0,0,0) with non-zero mean | 7635.3
ARIMA(1,0,0) with non-zero mean | 7633.853
ARIMA(0,0,1) with non-zero mean | 7627.067

ARIMA(0,0,0) with zero mean 7633.3
ARIMAC(1,0,1) with non-zero mean | 7593.053
ARIMA(2,0,1) with non-zero mean | Infinity
ARIMA(1,0,2) with non-zero mean | Infinity
ARIMA(0,0,2) with non-zero mean | 7146.388
ARIMA(0,0,3) with non-zero mean | Infinity
ARIMA(1,0,3) with non-zero mean | Infinity

ARIMA(0,0,2) with zero mean 7144.388

ARIMA(0,0,1) with zero mean 7625.067

ARIMAC(1,0,2) with zero mean Infinity

Table 10: Model performance for the trend component based on BK filter

Measures ME RMSE MAE MPE MAPE MASE
Statistics | 0.0001332925 [ 0.1264074 | 0.01932013 | 0.000509902 | 0.00908376 | 0.1971003

Table 11: Model performance for cyclic component based on BK filter

Measures ME RMSE MAE MPE MAPE MASE
Statistics | 0.0002217488 | 1.079319 | 0.1502145 [ 0.17902473 | Infinity | 0.8880269

with variance estimated as 5.405, log likelihood = -5412.08, AIC = 8826.15,
BIC = 8931.93 which is a random walk was found suitable for the trend compo-
nent of the Christiano-Fitzgerald filtered data. While ARIMA(2, 0, 0) which is
AR(2) model with variance estimated as 5.641, log likelihood= -5465.34, AIC
= 7938.68, BIC = 7961.8 was found suitable for the cyclic component of the
Christiano-Fitzgerald filter (see Tables 12-15).

Table 12: ARIMA modelling of CF trend component

Model AIC
ARIMA(2,1,2) with drift Infinity
ARIMA(0,1,0) with drift 8825.7
ARIMA(1,1,0) with drift 6580.228
ARIMA(0,1,1) with drift 9558.548

ARIMA(0,1,0) without drift | 8824.47
ARIMA(2,1,0) with drift 2215.268
ARIMA(5,1,0) with drift Infinity
ARIMA(3,1,0) with drift -2276.204
ARIMA(4,1,0) with drift -6821.881

ARIMA(5,1,0) without drift | Infinity
ARIMA(5,1,0) with drift -11410.95
ARIMA((4,1,0) with drift Infinity

The Baxter-King Filter (BKF) and Christiano-Fitzgerald filter (CFF) com-
pared on the basis of the Mean Error (ME), Mean Square Error (MSE), Mean
Absolute Error (MAE), Mean Percentage Error (MPE), and Mean Absolute Per-
centage Error (MAPE) were presented on Table 16.

The results of all the statistics presented in Table 16 showed that the Baxter-
King filter performed better than the Christiano-Fitzgerald filter as evinced from
the smaller error measures.
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Table 13: ARIMA modelling of CF cycle component

Model AIC
ARIMA(2,0,2) with non-zero mean | Infinity
ARIMA(0,0,0) with non-zero mean | 1291.35
ARIMA(1,0,0) with non-zero mean | 12023.57
ARIMA(0,0,1) with non-zero mean | 12061.23

ARIMA(0,0,0) with zero mean 12490.53
ARIMA(2,0,0) with non-zero mean | 7938.68
ARIMA(3,0,0) with non-zero mean | Infinity

Table 14: Model performance for the trend component based on CF filter

Measures ME RMSE MAE MPE MAPE MASE
Statistics | -0.04156251 | 2.324321 | 0.4637462 | 0.03748878 | 0.2255418 | 0.9997547

Table 15: Model performance for the cyclic component based on CF filter

Measures ME RMSE MAE MPE MAPE MASE
Statistics | 0.002631386 | 2.373621 | 0.3391235 | 21.61788 | 152.4224 | 0.6435376

Table 16: Comparison of BK and CF filtered data ARIMA models

In-sample error measures | Baxter-King filter | Christiano-Fitzgerald filter
ME 2.838e-05 2.073e+01
MSE 1.432e+00 3.950e+03
MAE 1.31Te-01 5.506e+01
MPE -4.457e-05 7.137e-02
MAPE 5.944e-04 2.708e-01

Based on the statistics in Table 17, the BK filtered data modelled with ARIMA
model gives the best model followed by the CF filter and then the raw data
modelled with Box-Jenkins ARIMA. Thus, filtering the data actually improved
the performance of the Box-Jenkins ARIMA model. The results also show that
BK filtration of the data improved the performance of the Box-Jenkins ARIMA
model more than the CF filter.

4. Conclusion

This paper has demonstrated the effectiveness of two identified time series fil-
ters to improve the Box-Jenkins approach to time series analysis and forecast-
ing. The results confirm the statements of Tran and Uyen (2016), Tsay (2016),
and Jason (2017) that wavelet-based processes improve the forecasting quality.
The Naira/Dollar exchange rate data decomposed into cycles and trend with
the aid of Baxter-King and the Christiano-Fitzgerald filters as smoothing tech-
niques that use wavelet-based methods of forecasting give optimal forecasts in
terms of the error measures than the general ARIMA. The filtered data using
BK generated ARIMA (4, 1, 1) model while filtered data using CF generated
ARIMA (0, 1, 0) model similar to ARIMA (0, 1, 0) model generated by the
classical Box-Jenkins approach. In comparison and based on assessment, the
result showed that the BK filtration of the data improved the performance of the
model more than the CF filter and the classical Box-Jenkins ARIMA model.
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Table 17: Comparison of performance by ARIMA models

Statistical Box-Jenkins BK (trend) BK (cyclic) CF (trend) CF (cyclic)
Measures | ARIMA (0,1,0) | ARIMA (4,1,1) | ARIMA (0,0,2) | ARIMA (0,1,0) | ARIMA (2,0,0)
RMSE 1.94051 0.1264074 1.079319 2.324321 2.373621
MAE 0.192118 0.01932013 0.1502145 0.4637462 0.3391235
MPE 0.000289 0.000509902 0.17902473 -0.03748878 21.61788
MAPE 0.092543 0.00908376 Infinity 0.2255418 152.4224
AIC 9964.73 8082.93 7146.71 8826.15 7938.68
BIC 9976.29 8145.49 7164.05 8931.93 7961.8

Thus, for an improved time series analysis and forecasting, it is imperative to
include an appropriate time series filter in the classical Box-Jenkins approach.

It should be worthy to note that the forecast results in this paper indicate that
the Nigeria economy within the period under review did not conform to the
theory behind ARIMA model for forecasting future exchange rates. This may
be attributed or due to the currency devaluation by the Central Bank of Nigeria
within the sample period that can make the exchange rate to follow an exponen-
tial function of time. The paper, therefore, suggests that the government should
adopt either a flexible exchange rate policy over a long period or a fixed ex-
change rate regime as opposed to the demand and supply schedules of Iyoha
(2004) to improve on the macroeconomic policy framework for exchange rate
determination in Nigeria. It is therefore imperative that further explorative re-
search be carried out to determine the empirical ways to minimize or eradicate
the fluctuation of the Nigeria Naira.
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