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Abstract. In this article, we propose a new distribution called Lomax-Cauchy {Uniform} distribution (LCU) distribu-
tion using Cauchy distribution as the baseline distribution. Statistical properties such as mode, median, density of order
statistic, quantile fnction, skewness and kurtosis of the new Lomax-Cauchy {Uniform} distribution. We investigate the
shapes of the density, hazard rate function, cummulative hazard function,linear representation of LCU distribution and
asymptotic properties of the new Lomax-Cauchy {Uniform} distribution using simulation when n=20, 100, 500 and
1000. The measure of variation of uncertainty of random variable of LCUD is also determined. Maximum Likelihood
estimation method is adopted in estimating the parameters. Lastly, the importance of the new LCU distribution is illus-
trated by comparing the proposed distribution with some existing distributions. The results show that the LCUD model
provides consistently better fits than other competing models for the exceedances of flood peaks of Wheaton River data.
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1. Introduction

Recently, global warming has caused high rainfall in many countries. Rivers overflowed their banks and
flooded most communities. Several flood warnings are in effect for some rivers. It is necessary to study flood
peaks of rivers in order to give accurate predictions of flood warnings in affected areas. The Arctic and sub-
Arctic regions are experiencing greater climate warming than other parts of the world (Intergovernmental
Panel on Climate Change, 2007). In the past decades, studies have shown that temperatures in these areas
have increased at twice the rate of the rest of the planet causing atmospheric warming in Yukon Territory
(Arctic Climate Impact Assessment, 2005; Lemmen et al., 2008; Hare at al., 2008). Most of the existing dis-
tributions have not fitted the flood peaks of the Wheaton river, which is experiencing major climate change.
Alshawarbeh et al. (2013) fitted the flood peaks of Wheaton river with Beta-Cauchy distribution and looks
like a good fit. But there could be distributions that can explain the variability in the flood peaks of the river
better.

The Cauchy distribution, named after Augustin Cauchy, is a simple family of distributions for which
the expected value does not exist. The Cauchy distribution has been used in many applications such as
mechanical and electrical theory, physical anthropology, measurement problems, risk and financial analysis.
It was also used to model the points of impact of a fixed straight line of particles emitted from a point source
(Johnson et al. 1994). In Physics, it is called a Lorenzian distribution, where it is the distribution of the energy
of an unstable state in quantum mechanics.

The Cauchy distribution finite moment of order greater than or equal to one does not exist except for
fractional absolute moments (Riley, et al., 2006). The central limit theorem does not hold for the limiting
distribution of the mean of a random sample from a Cauchy distribution. Due to this feature of the distri-
bution, some authors consider the Cauchy distribution as a pathological case (Krishnamoorthy, 2006). The
Cauchy distribution is an extreme case distribution and serves as counter examples for some well accepted
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results and concepts in statistics. (Ohakwe and Osu, 2011).
On the other hand, the Lomax distribution, also known as Pareto type-II distribution, is one of the impor-

tant continuous distributions with a heavy tail defined by one shape and one scale parameters. The Lomax
distribution was first used in Lomax (1954) to analyze business failure data. After that, researchers turned
to using the Lomax distribution extensively in applications in the different fields of sciences; this included
but was not limited to modeling business records by Atkinson and Harrison (1978), reliability and life test-
ing studies by Hassan and Al-Ghamdi (2009). Bryson (1974) suggested the use of the Lomax distribution
as an alternative to exponential, gamma and Weibull distributions. Ogunsanya et al. (2019) proposed Odd
Lomax-Exponential Distribution and applied it to daily arrival of patients per hour at the University of Lagos
Teaching Hospital for April 2017. Other applications of the Lomax distribution can be found in modeling
heavy tailed data in wealth, income, business and biological sciences.

Some of the known techniques to generalize distributions in the recent decades are introduced by Marshall
and Olkin (1997), Eugene et al. (2002), Shaw and Buckley (2009), Alzaatreh et al. (2013), and Alzaghal
et al.(2013). Eugene et al. (2002) introduced the beta-generated family of distributions using the beta as
the baseline distribution. Based on the beta-generated family, Alshawarbeh et al. (2013) proposed the beta-
Cauchy distribution. The beta-generated family was extended by Alzaatreh et al. (2013) to the T-R(W) family.
Aljarrah et al. (2014) considered the function W(.) to be the quantile function of a random variable Y and
defined the T-R{Y } family. Many families of these generalized distributions have appeared in the literature.
Alzaatreh et al. (2014), and Alzaatreh and Ghosh (2015) studied the T-gamma and the T-normal families.
Almheidat et al. (2015) studied the T-Weibull family.

In this article, a member of the family of generalized Cauchy distribution, which was first studied by
Alzaatreh et al. (2016), called the Lomax-Cauchy distribution using standard uniform distribution quantile
function is proposed and studied. The study includes moments, estimation, simulation and applications.
This proposed Lomax-Cauchyuniform distribution is used to model flood peaks in Yukon by examining the
highest stage reached during a particular flood at a given point on a Wheaton river. The remaining part of
this article is presented as follows:

2. Materials and method

2.1 Derivation of Lomax-Cauchy{Uniform} distribution

In the T-R{Y } framework, the random variable T is a ‘transformer’ that is used to ‘transform’ the random
variable R into a new family of generalized distributions of R. Note that T , R and Y are combined together
to form a new random variable X . The cumulative density function (CDF) of X as defined by Aljarrah et al.
(2014) is given by

FX(x) =

∫ QY [FR(x)]

a
fT (t)dt = FT {QY [FR(x)]} (1)

and the corresponding probability density function (PDF) is given by

fX(x) = fR(x)
fT {QY [FR(x)]}
fY {QY [FR(x)]}

. (2)

Alternatively, the PDF in (2) can be written as

fX(x) = fT {QY [FR(x)]} × fY {Q
′

Y [FR(x)]} × fR(x). (3)

Let R be a random variable that follows the Cauchy distribution with CDF given by

FR(x) =
1

2
+

1

π
tan−1

(
x− θ
α

)
. (4)
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Let Y be a random variable that follows uniform distribution in the bounded interval [0,1] with a quantile
function given by

QY (x) = x (5)

By using the quantile function of the uniform distribution given in (5), Alzaatreh et al. (2016) derived the
corresponding CDF to (1) as

FX(x) = FT [FR(x)] (6)

and the corresponding PDF to (6) is given by

fX(x) = fC(x)× fT [FC(x)] (7)

where FC(x) and fC(x) are the CDF of Cauchy distribution, that is, FC(x) = FR(x) and fT (x) is the PDF
of Lomax distribution given by

fT (x) =
λk

(1 + λx)k+1
(8)

and the CDF of Lomax distribution is given by

FT (x) = 1− (1 + λx)−k (9)

Put equation (4) into (9) to have

FT [FR(x)] = 1− (1 + λFR(x))−k (10)

Now, put (10) into (6) to have the CDF of the proposed Lomax-Cauchy{Uniform} (LCU) distribution
given by

FX(x) = 1−
{

1 + λ

[
1

2
+

1

π
tan−1

(
x− θ
α

)]}−k
(11)

and the corresponding PDF to (11) is given by

fX(x) =
λk

απ

[(
x− θ
α

)2

+ 1

]−1{
1 + λ

[
1

2
+

1

π
tan−1

(
x− θ
α

)]}−k−1
, α, k, λ > 0, θ ≥ 0, x ≥ 0

(12)
where k is a shape parameter, θ is a location parameter, λ and α are scale parameters.

2.2 Properties of LCU distribution

The structural properties of LCU distribution will be investigated in details in this section. For ease, a random
variable X with PDF fX(x) in (12) is said to follow the lomax-Cauchy{uniform} distribution and is
denoted by LCU(α, k, λ, θ).

2.2.1 Survival function

The survival function of LCU(α, k, λ, θ) is given by

SX(x) =

{
1 + λ

[
1

2
+

1

π
tan−1

(
x− θ
α

)]}−k
(13)
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The function in (13) is a function that gives the probability that an item of interest will survive beyond any
given specified time x ∈ X , also known as the reliability function.

2.2.2 Hazard function

The hazard function of the LCU(α, k, λ, θ) is given by

hX(x) =
λk

απ

[(
x− θ
α

)2

+ 1

]−1{
1 + λ

[
1

2
+

1

π
tan−1

(
x− θ
α

)]}−1
(14)

The function in (14) of random variables X that follows LCU distribution is called the hazard rate of LCU
distribution, also known as the failure rate or force of mortality.

2.2.3 Cumulative hazard function

The cumulative hazard function,HX(x) of a continuous random variableX that follows the LCU distribution
is derived from this definition

HX(x) = −log[SX(x)] (15)

Put equation (13) into (15) to have

HX(x) = klog

({
1 + λ

[
1

2
+

1

π
tan−1

(
x− θ
α

)]})
(16)

Equation (16) defines the probability of failure at time x given survival until time x ∀x ∈ X .

2.2.4 Quantile function, median, skewness, kurtosis and mode

LEMMA 2.1 Let Y be a random variable that follows a Lomax distribution with parameters k and λ, then
the quantile function of LCU(α, k, λ, θ) is given by QX(p) = θ + αtan [π (QY (p)− 0.5)].

Proof. If Y is a Lomax random variable with parameters λ and k, then the random variable

X = θ + αtan [π (Y − 0.5)] (17)

follows a LCU(α, k, λ, θ) in equation (12. By using equation(17), the LCU quantile function can be com-
puted from the lomax quantile function as

x = QX(p) = θ + αtan [π (QY (p)− 0.5)] (18)

where QY (p) is the quantile function of the lomax distribution with parameters λ and k. We can compute
QY (p) by using R code. �

THEOREM 2.2 Let X be a random variable that follows a LCU(α, k, λ, θ), the quantile function of Xis
given by QX(p) = θ + αtan

[
π
([

1
λ(1− p)−1/k − 1

λ

]
− 0.5

)]
Proof. If Y follows a lomax distribution with parameters λ and k, then its quantile function is given by

QT (p) =
1

λ
(1− p)−

1

k − 1

λ
(19)

Put equation (19) into (18) to arrive at the quantile function of LCU(α, k, λ, θ) and it is given by.

QX(p) = θ + αtan

[
π

([
1

λ
(1− p)−1/k − 1

λ

]
− 0.5

)]
(20)

�
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Median

The median and other measures of partition for LCU distribution can be derived from the quantile function
in equation (20).

The median of LCU(α, k, λ, θ) is given by

Me = QX(0.5) = θ + αtan

[
π

([
0.5−1/k

λ
− 1

λ

]
− 0.5

)]
(21)

2.2.5 Skewness and kurtosis

It is often known that the coefficient of skewness and kurtosis are derived from the moment of a distribu-
tion. But an alternative measures for skewness and kurtosis is based on quantile functions, which are more
appropriate for T-Cauchy distribution classes. The measure of skewness S and kurtosis K defined by Galton
(1983) and Moors (1988) are based on quantile functions and they are respectively defined as

S =
Q(6/8)− 2Q(4/8) +Q(2/8)

Q(6/8)−Q(2/8)
(22)

and

K =
Q(7/8)−Q(5/8) +Q(3/8)−Q(1/8)

Q(6/8)−Q(2/8)
(23)

THEOREM 2.3 The skewness and kurtosis of LCU distribution does not depend on parameters α and θ

Proof. Let

φ(p) = π

{
1

λ

[
(1− p)−1/k − 1

]
− 0.5

}
(24)

Put equation (24) in (20) to have

QX(p) = θ + αtan[φ(p)] (25)

Put equation (25) in (22) to have

S =
θ + αtan[φ(6/8)]− 2θ − αtan[φ(4/8)] + θ + αtan[φ(2/8)]

θ + αtan[φ(6/8)]− θ − αtan[φ(2/8)]
(26)

Factorise equation (26) by factoring out α, since all the terms contains α to have

S =
tan[φ(6/8)]− tan[φ(4/8)] + tan[φ(2/8)]

tan[φ(6/8)]− tan[φ(2/8)]
(27)

Thus, φ(.) does not contain α and θ.
Also, put equation (25) in (23) to have

K =
θ + αtan[φ(7/8)]− θ − αtan[φ(5/8)] + θ + αtan[φ(3/8)]− θ − αtan[φ(1/8)]

θ + αtan[φ(6/8)]− θ − αtan[φ(2/8)]
(28)

Factorise equation (28) by factoring out α, since all the terms contains α to have

K =
tan[φ(7/8)]− tan[φ(5/8)] + tan[φ(3/8)]− tan[φ(1/8)]

tan[φ(6/8)]− tan[φ(2/8)]
(29)

Thus, φ(.) in equation (29) does not contain α and θ. Equations (27) and (29) complete the proof. �
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For some varying values of λ and k, the values of Galton’s skewness and Moors’ kurtosis are computed
and presented in Table 1.

Table 1: Galton’s skewness and Moors’ kurtosis for some values of k, λ (for any α and θ)

The values of θ are measured in degrees. Table 1 shows that when k is high (k ≥ 5), the LCU distribution
is positively skewed for all values of λ but could be negatively skewed if k ≤ 5). The skewness and the
kurtosis decrease when k increases at a fixed λ (for all λ ≥ 5). But, the skewness and the kurtosis increase
when λ increases for a fixed k (for all k ≥ 5). Note that the skewness and kurtosis of LCU distribution do not
change for all values of α and θ and shown in theorem 2. We used the quantile function in equation (20) for
different values of k and λ and we compute the values of S andK using equations (22) and (23) respectively.
The graphs for the skewness and kurtosis for increasing values of k and for different fixed values of λ are
presented in Figure 1.

Fig. 1a and Fig. 1b of Figure 1 are the Galton’s skewness for LCU distribution for values of k ≤ 1 and
k ≥ 5 respectively. Fig. 1a shows that if the values of k are less than one, the skewness can be positive or
negative, also shown in Table 1; Fig. 1b shows that for increasing k for k ≥ 5, the skewness is an increasing
positive function as also shown is Table 1.

Fig. 1c and Fig. 1d of Figure 1 are the Moors’ kurtosis for LCU distribution for values of k ≤ 1 and k ≥ 5
respectively. Fig. 1c shows that if the values of k are less than one, the kurtosis can be positive or negative,
also shown in Table 1; Fig. 1d shows that for increasing k for k ≥ 5, the kurtosis is an increasing positive
function as also shown is Table 1.
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Figure 1: Galton’s skewness (S) and Moors’ kurtosis (K) for the LCU distribution

2.3 Linear representation of LCU

Recall the PDF in equation (12) given as

fX(x) =
λk

απ

[(
x− θ
α

)2

+ 1

]−1{
1 + λ

[
1

2
+

1

π
tan−1

(
x− θ
α

)]}−k−1
, α, k, λ > 0, θ > 0, x ∈ <

Using binomial and Maclaurin expansion from Gradshteyn, I.S, Ryzhik, I.M(2007), we have the following
series [(

x− θ
α

)2

+ 1

]−1
=

∞∑
i=0

(−1)i
(

1
i

)(
x− θ
α

)2i

(30)

{
1 + λ

[
1

2
+

1

π
tan−1

(
x− θ
α

)]}−(k+1)

=

∞∑
j=0

(−1)jλj
(
k + 1
j

)[
1

2
+

1

π
tan−1

(
x− θ
α

)]j
(31)

[
1

2
+

1

π
tan−1

(
x− θ
α

)]j
=

∞∑
n=0

(1/2)j−1
(
j
n

)[
1

π
tan−1

(
x− θ
α

)]n
(32)
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tan−1
(
x− θ
α

)
=

∞∑
m=0

(−1)m
(
x−θ
α

)2m+1

2m+ 1
;

(
x− θ
α

)
≤≤ 1 (33)

Insert equations (30), (31), (32) and (33) into the pdf in (12) to obtain

fX(x) =

∞∑
i=0

∞∑
j=0

∞∑
m=0

∞∑
n=0

∞∑
l=0

wi,j,l,m,nξα,λ,θ,kx
l
i (34)

where

wi,j,l,m,n =
π−(n+1)(2m+ 1)−n(−1)3i+3mn+j+n2n−jΓ(2)Γ(j + 1)Γ(k + 2)Γ(2i+ 2mn+ n+ 1)

Γ(2− i)Γ(i+ 1)Γ(j − n+ 1)Γ(n+ 1)Γ(k − j + 2)Γ(j + 1)Γ(2i+ 2mn+ n− l + 1)Γ(l + 1)
(35)

and

ξα,λ,θ,k = k
λj+1θ2i+2mn+n−l

α2i+2mn+n+1
(36)

2.4 Order statistics

By definition, the rth order statistics random variable X is given by

fr:n =
n!

(r − 1)!(n− r)!
fX(x)[FX(x)](r−1)[1− FX(x)](n−r) (37)

Then the fr:n(xr) of a LCU distribution is derived by inserting (11) into (30) and by using expansion in (30)
- (33), given by

fr:n =
kn!

π(r − 1)!(n− r)!

∞∑
p,q=0

(−1)p
(
n− r
p

)(
p+ r − 1

q

)
[(

x−θ
α

)2
+ 1
] {

1 + λ

[
1

2
+

1

π
tan−1

(
x− θ
α

)]}−(kq+k+1)

(38)
and let

fα,λ,θ,(kq+k+1)(xr) =

[(
x− θ
α

)2

+ 1

]−1{
1 + λ

[
1

2
+

1

π
tan−1

(
x− θ
α

)]}−(kq+k+1)

(39)

with parameter α,λ ,θ and (kq + k + 1) we have

fr:n =
kn!

π(r − 1)!(n− r)!

∞∑
p,q=0

(−1)p
(
n− r
p

)(
p+ r − 1

q

)
fα,λ,θ,(kq+k+1)(xr) (40)

2.5 Shannon’s entropy

The entropy of a random variable is a measure of variation of uncertainty. Let X be a random variable with
probability density function f(x) where support is a set X, then the differential or Shannon’s entropy of the
variable X is given by

ηx = −E{log (fLCD(x))}
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Using Aljarrah et al. (2014) and Alzaatreh et al. (2016) results,

ηx = ηT + E{log (fy(T ))} − E{log (fc (Qc (Fy(T ))))} (41)

where ηT is the entropy of Lomax distribution

E{log (fc (Qc (Fy(T ))))} = −log (πθ) + 2log (sin (πFy(T ))) (42)

and

log (sin (πx)) = log (πx) + 2

n∑
j=1

Vjx
2j , (43)

ηT = −log(k/λ) +

(
k + 1

k

)
(44)

Substitute (42) in (41) and further substituting (41) and (42) in (40), we have the Shannon entropy of LCD

ηx = −log (π) + log (θ)− log(k/λ) +

(
k + 1

k

)
+ E{log (fy(T ))} − 2E {log (x)} − 2

n∑
j=1

Vjx
2j (45)

where Vj =
(−1)(2π)2jB2j

2j(2j)!
and Bj is the Bernoulli number Alzaatreh et al. (2016).

2.6 Maximum likelihood estimation

By definition, the likelihood of a random variable X with PDF fX(x) and a parameter space ξ is given by

L(x, ξ) = Πn
i=1f(x, ξ) (46)

Put the PDF in (11) into equation (38) and take the log to arrive at the loglikelihood function of LCU
distribution given by

l = nln(λ)+nln(k)−nln(πα)−
n∑
i=1

ln

[(
x− θ
α

)2

+ 1

]
−(k+1)

n∑
i=1

ln

{
1 + λ

[
1

2
+

1

π
tan−1

(
x− θ
α

)]}
(47)

where l = logL(x, ξ). Differentiate equation (39) partially with respect to each of the parameters and equate
the results to zero.

δl

δα
=
n

α
−

n∑
i=0

−
2
(
xi−θ
α

)2
α3
[(

xi−θ
α

)2
+ 1
] − (k + 1)

n∑
i=0

(
− λ (xi − θ)
πα2

{
1 + λ

[
1
2 + 1

π tan
−1
(
xi−θ
α

)]}) (48)

δl

δλ
=
n

λ
− (k + 1)

n∑
i=0

( [
1
2 + 1

π tan
−1 (xi−θ

α

)]{
1 + λ

[
1
2 + 1

π tan
−1
(
xi−θ
α

)]}) (49)

δl

δk
=
n

k
−

n∑
i=1

ln

{
1 + λ

[
1

2
+

1

π
tan−1

(
xi − θ
α

)]}
(50)
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δl

δθ
= −

n∑
i=0

−
2
(
xi−θ
α

)
α2
[(

xi−θ
α

)2
+ 1
] − (k + 1)

n∑
i=0

(
− λ

πα
{

1 + λ
[
1
2 + 1

π tan
−1
(
xi−θ
α

)]}) (51)

Solving them simultaneously, α̂, λ̂ , k̂ and θ̂, which are the maximum likelihood estimates (MLEs) for the
parameters α, λ, k and θ are respectively obtained. The computations are done using the maxLik package in
R 3.3.2 software.

3. Results and discussion

3.1 Simulation

In this section, the relation between lomax-Cauchy and lomax random variables in equation (17) was used to
simulate data for LCU distribution. The random variates of lomax was generated and then inserted into the
relation in (17) to generate the LCU random variates. The maximum likelihood estimates are computed for
each simulated sample. Results on the biases (estimate – actual) and the standard deviations of the estimates
are used to investigate the consistency and performance of the method of maximum likelihood estimation.
The simulation was carried out for various values of the parameters of the LCU distribution and the results
are similar. We reported the results for the parameter values λ = 0.5, 1.5, 2.0, 2.5; θ = 30, 45, 60, 65; k=
0.5 and α = 1. Four different sample sizes of n = 100, 500 and 1000 are used in the simulation. For each
sample size and each parameter combination, the maximum likelihood estimates of the parameters λ, θ, k,
and α are computed and the process is repeated 500 times. The average bias and the standard deviation of
the maximum likelihood estimates are computed. The results are reported in Table 2.

Table 2: Maximum likelihood estimates, bias and standard error of difference combination of values of
parameters (λ, θ, k) when parameter α = 1.

Table 2 shows that the maximum likelihood estimation method performs well in estimating the LCU dis-
tribution parameters. The estimates of the parameters and their standard errors are reasonable and consistent.
They show that the standard errors of the estimates decrease as the sample size increases. However, the bi-
ases, which are somewhat small, do not show a clear decreasing trend as sample size increases. For fixed λ,
θ and k the bias and the standard error for the estimate of λ increases as n increases. Similarly, for fixed λ,
θ and k the bias and the standard error for the estimate of k increases as n increases. The results from this
research, suggest that the maximum likelihood method can be used to estimate the parameters of the LCU
distribution.
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3.2 Application

The Wheaton river data Alshawarbehet et al. (2013) used a dataset on the exceedances of flood peaks
(m3/s) of the Wheaton River in Yukon Territory, Canada. Which was previously applied by Akinsete et al
(2008) to fit generalized Pareto distribution.

We therefore applied Cauchy distribution, Beta Pareto, beta-Cauchy distributions and the new Lomax
Cauchy distribution to fit the dataset. The result is presented below in Table 4.

Table 3: Parameter estimates (standard errors in parentheses) for the Wheaton River data

∗Alshawarbeh et al. (2013).

We fit the LCU distribution to the Wheaton river data and compared with result from Alshawarbehet
al (2013). Maximum likelihood estimation method as discussed in Section 2.6 is adopted to estimate the
unknown parameters α, β, k, θ . The computations were done using the maxLik function in R. Table 4 lists
the MLEs (and the corresponding standard errors in parentheses) of the model parameters, the log-likelihood
value, the AIC (Akaike Information Criterion), the Kolmogorov- Smirnov (K-S) test statistic, and the p-value
for the K-S statistic for the fitted distributions. These results show that the LCUD models have the lowest
log likelihood and AIC, and therefore it could be selected as the best model.

4. Conclusion

In this paper, we propose a new lifetime model called the Lomax-Cauchy(LCD)distribution. We study some
of its structural properties including an expansion for the density function and quantile function and order
statistic. The maximum likelihood method is employed for estimating the model parameters and the ob-
served information matrix is determined. The histogram using LCU distribution variates generated using the
quantile function, empirical density plot, empirical CDF, empirical survival, empirical hazard and empirical
cumulative hazard plots are depicted in Figures 2, 3, 4, 5, 6 and 7 respectively to show the shape of the
distribution at different parameter values (see Appendix 1). Order statistic and Shannon entropy of LCU dis-
tribution were studied. We fit the new model to one real data sets on exceedances of flood peaks of Wheaton
River to demonstrate its usefulness in practice. We conclude that the LCD model provides consistently better
fits than other competing models for the exceedances of flood peaks of Wheaton River data. We hope that the
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proposed model will attract wider applications in areas such as environmental hazard, engineering, survival
and lifetime data, hydrology, economics, among others.
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Appendix

Appendix 1

Figure 2: Histogram of LCU distribution

Figure 3: Density plot of LCU distribution

Appendix 2 R Code

LomaxCauchy Distribution
set.seed(12345)
n = 20
alpha = 1
lambda = 0.5
theta = 30
k = 0.5
p = sort(runif(n))
y = rlomax(p, lambda, k)
x = theta + alpha*tan(’pi*(y-0.5))
lcu=function(param,x) alpha=param[1]
lambda=param[2]
theta=param[3] k=param[4]
L = n ∗ log(lambda) + n ∗ log(k)− n ∗ log(pi)− n ∗ log(alpha)− sum′(log(((x− theta)/alpha)2 + 1))− (k +
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Figure 4: Empirical CDF of LCU

Figure 5: Empirical survival of LCU distribution

Figure 6: Empirical hazard of LCU distribution
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Figure 7: Empirical cumulative hazard of LCU distribution

1) ∗ sum(log(1 + lambda ∗ (0.5 + (1/pi′) ∗ (180/3.14159265) ∗ atan((x− theta)/alpha))))
return((L))
Est= maxLik(lcu, x=x,start=c(1,1,1,1))
summary(Est)

rm(list = ls())
set.seed(12)
p = sort(runif(1000, 0, 1))
alpha = 0.1
lambda = 0.2k = 4
tita = 30
y1 = alpha ∗ tan((pi ∗ (((1− p)( − 1/k)− 1)/lambda− 1/2)) ∗ 3.1′4159265/180) + tita
summary(y1)
S1 = (1 + lambda ∗ (1/2 + 1/pi ∗ (180/3.14159265) ∗ atan((y1− tita)/alpha)))( − k)
h1 = lambda∗k/(alpha∗pi)∗((((y1−ti′ta)/alpha)(2)+1)(−1)∗(1+ lambda∗(1/2+1/pi∗(180/3.14159265)∗
atan((y1− tita)/alpha))))( − 1)
H1 = log(1 + lambda ∗ (1/2 + 1/pi ∗ (180/′3.14159265) ∗ atan((y1− tita)/alpha)))
alpha = 0.2
lambda = 0.3
k = 2.5
tita = 30
q = (1− p)( − 1/k)
y2 = alpha ∗ tan((pi ∗ (((1− p)( − 1/k′)− 1)/lambda− 1/2)) ∗ 3.14159265/180) + tita
summary(y2)
S2 = (1 + lambda ∗ (1/2 + 1/pi ∗ (180/3.14159265) ∗ atan((y1− tita)/alpha)))( − k)
h2 = lambda∗k/(alpha∗pi)∗((((y1′−tita)/alpha)(2)+1)(−1)∗(1+ lambda∗(1/2+1/pi∗(180/3.14159265)∗
atan((y1− tita)/alpha))))( − 1)
H2 = log(1 + lambda ∗ (1/2 + 1/pi ∗ (1′80/3.14159265) ∗ atan((y1− tita)/alpha)))
alpha = 0.3
lambda = 0.4
k = 10
tita = 30
q = (1− p)( − 1/k)
y3 = alph ∗ tan((pi ∗ (((1− p)( − 1/k)− 1)/lambda− 1/2)) ∗ 3.14159265/180) + tita
summary(y3)
S3 = (1 + lambda ∗ (1/2 + 1/pi ∗ (180/3.14159265) ∗ atan((y1− tita)/alpha)))( − k)
h3 = lambda∗k/(alpha∗pi)∗((((′y1−tita)/alpha)(2)+1)(−1)∗(1+ lambda∗(1/2+1/pi∗(180/3.14159265)∗
atan((y1− tita)/alpha))))( − 1)
H3 = log(1 + lambda ∗ (1/2 + 1/pi ∗′ (180/3.14159265) ∗ atan((y1− tita)/alpha)))
alpha = 1
lambda = 5
k = 8
tita = 30
q = (1− p)( − 1/k)
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y4 = alpha ∗ tan((pi ∗ (((1− p)( − 1/k)− 1)/lambda− 1/2)) ∗ 3.14159265/180) + tita
summary(y4)
S4 = (1 + lambda ∗ (1/2 + 1/pi ∗ (180/3.14159265) ∗ atan((y1− tita)/alpha)))( − k)
h4 = lambda∗k/(alpha∗pi)∗(′(((y1−tita)/alpha)(2)+1)(−1)∗(1+ lambda∗(1/2+1/pi∗(180/3.14159265)∗
atan((y1− tita)/alpha))))( − 1)
H4 = log(1 + lambda ∗ (1/2 + 1/′pi ∗ (180/3.14159265) ∗ atan((y1− tita)/alpha)))
alpha = 2
lambda = 8
k = 10
tita = 30
q = (1− p)( − 1/k)
y5 = lambda ∗ tan((pi ∗ (((1− p)( − 1/k)− 1)/lambda− 1/2)) ∗ 3.14159265/180) + tita
summary(y5)
S5 = (1 + lambda ∗ (1/2 + 1/pi ∗ (180/3.14159265) ∗ atan((y1− tita)/alpha)))( − k)
h5 = lambda∗k/(alpha∗pi)∗((((y1− tita)/alpha)(2)+1)(−1)∗(1+ lambda∗(1/2+1/pi∗(180/3.14159265)∗
atan((y1− tita)/alpha))))( − 1)
H5 = log(1 + lambda ∗ (1/2 + 1/pi ∗ (180/3.14159265) ∗ atan((y1− tita)/alpha)))
par(mfrow = c(2, 3))
hist(y1, xlab = ”alpna = 0.1, , lambda = 0.2, theta = 30, k = 4”,main = ”HistogramofLCUD”)
hist(y2, xlab = ”alpha = 0.2, , lambda = 0.2, theta = 30, k = 2.5”,main = ”HistogramofLCUD”)
hist(y3, xlab = ”alpha = 0.3, , lambda = 0.4, theta = 30, k = 10”,main = ”HistogramofLCUD”)
hist(y4, xlab = ”alpha = 1, , lambda = 5, theta = 30, k = 8”,main = ”HistogramofLCUD”)
hist(y5, xlab = ”alpha = 2, , lambda = 8, theta = 30, k = 10”,main = ”HistogramofLCUD”)
hist(y5, xlab = ”alpha = 10, , lambda = 0.2, theta = 30, k = 4”,main = ”HistogramofLCUD”)
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