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Abstract. The modeling phase of response surface methodology (RSM) involves the use of regression
models to estimate the functional relationship between the response and the explanatory variables using
data obtained from a suitable experimental design. In RSM, the Ordinary Least Squares (OLS) is tra-
ditionally used to model the data via user-specified low-order polynomials. The OLS model is found to
perform poorly if the constant variance (homoscedasticity) assumption is violated. Additionally, the speci-
fied polynomials are usually found inadequate for the data. The problems resulting from model inadequacy
include biased estimates of the mean response function. Recently, nonparametric regression model, such as
the Local Linear Regression (LLR), has been proposed to address the model inadequacy issue associated
with the use of the OLS model. The LLR model is flexible, hence, can capture local trend and structure in
the data that are misspecified by an inadequate OLS model. The successful application of the LLR model
has been limited to studies with three unique features, namely: a single explanatory variable, fairly large
sample sizes and space-filling designs. Therefore, the LLR model is scantily used in RSM which general
underpinning include economy of data points (small sample size), typically sparse data, and oftentimes,
more than one explanatory variables.In this paper, we propose a new nonparametric regression models
that incorporate the smoothing of residuals to provide a second opportunity of fitting part of the data
that is not captured by the LLR model. Using an example from RSM literature, it is observed that the
goodness-of-fits of the proposed model are considerably better when compared with those of the OLS and
the LLR models.
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1. Introduction

Response Surface Methodology (RSM) is a sequential statistical tool employed by statistician and
engineers for empirical model building, such that the response variable is optimized (Nair et al.,
2014). RSM consists of three main phases namely, experimental design phase, modeling phase and the
optimization phase of the fitted regression models. The peculiarity of RSM data which include, small
sample size, sparse data and curse of dimensionality have reduced the performance of nonparametric
regression models in terms of goodness of fit statistics and optimization result.

Consider the parametric regression model:

y=XB+e€ (1)

Y1 1z11 T12 -+ Tk

Y2 . 1 woy xog -+ wog )
where y = . is the vector of response, X = | . . . . is the model

1xp1 Tpo -+ Tk

Yn | (nx1) (nx (k+1))
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matrix, X = X (OLS ), € is the vector of error term. The estimated responses for the ith data points
are:

§OLS = x[OLS (x’OLSxOLS)_1 X'OLSy =12, n. (2)

In matrix form, equation (2) is expressed as:

o
hg LS)
h(OLS)
y(OLS) — H(OLS)y — 2 : y, (3)
h(dLS)

where the 1 x n vector hSOLS) is the ith row of the n x n OLS Hat matrix. The drawback of the

parametric regression model is that if misspecified, the estimates are usually biased (Swamy et al.,
2008; Fathi et al., 2011).

1.1 The Local Linear Regression Model (LLR)
(LLR)

Using the weighted least squares theory (Pickle, 2016), the LLR estimator g, is given as:

yiLLR = X;(LLR) (X/(LLR)WiX(LLR)) - X/(LLR)Wiy7 1= 17 27 e, N (4)

where X (ELR) i the LLR model matrix that depends solely on the number of explanatory variables
utilized in the experiment, W; = W is the raw diagonal matrix of kernel(Gaussian) weight used
in the estimation of the ith response and a:i(LLR)

of locations, the LLR estimator is expressed as:

is the ith row of the LLR model matrix. In terms

gLLR — h;(LLR)y, i=1,2,--,n. (5)
The drawback of LLR model is that it suffers high bias in regions where the data exhibit curvature
(Hastie et al., 2009; Rivers, 2009).

1.2 Bandwidths for nonparametric regression model

The choice of bandwidth for nonparametric regression models is a critical criterion and challenging
in regression analysis (Kai, 2009; Aydin et al., 2013). Bandwidth selection was designed to minimize
bias and variance of the estimate (Rivers, 2009).
A bandwidth b, is said to be fixed if it’s value is constant for all the locations in a given regression
technique, otherwise it is referred to as locally adaptive bandwidths (Prewitt and Lohr, 2006).
Hence, the kernel function, K(.) employed in RSM is the simplified Gaussian kernel given in Wan
and Birch (2011) as:

2
Ti — X0 To — Ty T — X0 .

where the kernel weights w;g in the kernel weight matrix is given as:

K- 5)/b)
S K (g — w0)[B)

W;0

i=1,2,---n. (7)

According to Wan (2007), K (%5%) in equation (6) is referred to as kernel function which regulates
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the shape of the kernel weights (e.g. Gaussian kernel), z( is a dummy known as target point, b is
the bandwidth.

A situation where more than one explanatory variable are used in the model matrix X(LLR), the
kernel weight w;g is a product from simplified Gaussian kernel given as:

k n k
o x,-j—aco ij—.’L'() _
ww_jl_[lK<b )/; l_IlK<b ) i 12.om (8)

(Mays et al., (2001) and Pickle, (2006)). For data originated from RSM, the vector of optimal
bandwidths ® = [b},b3,-- - ,b}] is obtained based on the minimization of the Penalized Prediction
Error Sum of Squares (PRESS**) (Wan and Birch, 2011). The PRESS** criterion for selecting the
bandwidths is given as:

S (i i)

PRESS™(®) = , 9

@)= trace(HO(®)) + (n — k — 1) Ene=55Es )

where SSFE,,q, is the maximum Sum of Squared Errors obtained as the by, bo,--- , b, approaches
infinity, SSEg is the sum of squared errors associated with a set of bandwidths by, bs,- - , by,

trace(HO) (®)) is the trace of the Hat matrix and ¥i,—i() is the leave-one-out cross-validation es-
timated value of y; with the ith observation left out (Mays et al. 2001; Wan and Birch 2011).

1.3 Locally adaptive bandwidths

Edionwe et al. (2016) proposed locally adaptive bandwidths:

exelsal )
(Cn—1)> " 1y

i=1,2,-.n (10)

where b* is a fixed optimal bandwidth, y;, ¢ = 1,2,--- ,n, could be taken as any statistics that
mirrors the insufficiencies in the OLS estimates of the responses, T' = Z?:l yj, N >0, and C > 0,
are parameters introduced to address the problem of clustering within the interval [0, 1]. The optimal
chosen tuning parameters of N and C' are hereafter refers to as N* and C*, respectively.

2. Materials and method

The nonparametric regression model is not restricted to a user specified form as in the parametric
counterpart. In spite of its flexibility, nonparametric regression models are challenged in a study
such as RSM due to three important aspects in RSM namely;

e Sparseness of RSM data

e Cost efficient design (small sample sizes)

e The study utilizes more than one explanatory variable (a term referred to as curse of dimen-
sionality).

2.1 Proposed Nonparametric Regression Model (PNRM)

Let G; be the sum of Local Polynomial Regression (LPR) of order 1 and the correction term A; for
location %, given by

G, = ggd) + A;, 1=1,2,--- ,n; d = order of the polynomial (11)
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= 91(1) + A;

where G; = y(PNRM), g-(l) = y(LLR), A; = Ar; , A € [0,1] .\ is the mixing parameter that controls

(2 3 K3

the proportion of the residuals that needed to be added to the component fit of LLR, r; are vectors
of ith residuals from the fitted LLR. Thus,

yz(PNRM) y(LLR) + >‘r27 1= 17 27 e, n. (12)
PNRM LLR
BN = B 4 ). (13)
The estimators of the component part of Equation (13) are given as:

QZ(PNRM) _ A(LLR) 4, (14)

where 1; = r(LLR) Z(LLR) is the LLR residual fit, (LLR) = hELLR) ; and T A(LLR) h(LLR) Tiy Ty =
~(LLR) _
[yl er ]) { 1) 2)

AZ(PNRM) _ QZ(LLR) + )\h,ELLR) [yi _ @§LLR)]

(15)

gPNRM _ X;(LLR) (X/(LLR)WiX(LLR))_ X (LLR)WW . WA, "(LLR) (X/(LLR)W?X(LLR)>_1 %

)

’ / ’ -1 ’
X (FLR) W <y _ Xi(LLR) (X (LLR)WiX(LLR)) X (LLR)Wiy>

l

/ ’ -1 ’ ’ -1
gPNRM _ < (FLR) (X (LLR)WiX(LLR)) X' LLR)W v 4+ AX, "(LLR) <X (LLR)W;X(LLR)> y

’ 4 ’ -1 ’
X (LLR)W; [I _ xi(LLR) (X (LLR)WiX(LLR)> X (LLR)Wi] y (16)
Using matrix notation, the PNRM can be expressed as:

_thLR)y_l_)\h(LLR) (h(LLR)y) T

y -
(LLR) (LLR) (LLR)
§(PNRM) _ hy ™y + Ahy y = (hy™y) (17)

h(LLR) i )\h(LLR) (y _ (hglLLR)y>>

thLR) n )\thLR) I_ (thLR))
h(LLR) n )\h(LLR) I— (h(LLR))
§(PNRM) _ | 2 y (18)

h7(1LLR) 4 )\thLR) (I - (h%LLR)))

§(PNRM) _ g(PNRM)y (19)
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where Wi = Wi i5 an n x n diagonal weights matrix for estimating the ith LLR residual, T is

the n x n identity matrix, the 1 x n vector [hz(-LLR) + AR{ER) (I - (hZ(LLR)))} is the ith row of the

i
PNRM Hat matrix, HPNEM) yy, — Whaw ig an n x n raw diagonal matrix of the kernel weights
for estimating the ¢th response. The matrix W; is given as:

Wil 0O ---0
0 Wi + - 0

Wi: . .. . 7i:1727"'7n- (20)
0 0 - wip

The parameter A, is known as the mixing parameter whose optimal value \* is selected based on
the minimization of the PRESS** criterion:

n P— /\, . 2
PRESS**(A) _ Zi:l (yl y%—l(q)v)\)) (21)

n —trace(HO(®,\)) + (n — k — 1)W7

where ® = [b7, b5, -+ ,b%] is the vector of optimal bandwidths, SSFEg is the Sum of Squared Errors

r'n

associated with the set of the optimal bandwidths, [b%,b5,--- ,b%], trace(H) (®, \)) is the trace of
()

Hat matrix, and yiﬁi(fb, A) is the leave-one-out cross-validation estimate of y;.

2.2 Algorithm I: Leave — One — Out cross validation procedures for selecting
bandwidths and mixing parameter for the proposed model

Step 1: obtain the bandwidth b; for location i

(e[S -w)
(Cn—1) 2?21 yj

i=1,2,--,n.

Step 2: Define a set H of permissible values of bandwidths (for RSM data, H € (0, 1]) from where
the bandwidths b;, ¢ = 1,2, --- ,n are assigned values.
Step 3: Construct the leave-one-out cross validation:

n ~ 2
Sy (Ui — Gi—i(a))
55Fw..—SSEq
n —trace(HO)(®)) + (n — k — 1)25Epge—55Ee

mazx

PRESS* (b) =

for selecting bandwidths on the interval (0,1] and obtain y; ;(®) the estimated response
at location ¢, leaving out the ¢th observation for the set of adaptive bandwidths & =
[blaan"' 7bn;b17b27"' b bib;a 7b;kz]

’yvn

Step 4: obtain SSEpq, as b tends to infinity, (say b = 1000000000000000000) in 3" (b)

n

SSEmar = 3 (vi - .nyLLR’(b))2

i=1
Step 5: obtain SSFEg for a set of adaptive bandwidths:

SSBa(biuba - b) = 3 (v: = 50 0o, 1b0)

i=1
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Step 6: obtain the mixing parameter A via PRESS**

S (v — @i,fi(é,/\))Q

n —trace(HO(®,\)) + (n — k — 1)755%'3‘%75.5&’ ‘

PRESS™(\) =

2.3 Algorithm II: Algorithm for the implementation of PNRM

Step 1: Choose the set of bandwidths and mixing parameter that minimizes PRFESS** criterion.
Step 2: Define the proposed model

y(PNRM) _ yELLR) i )\h(LLR) [Yi _ y(LLR)}

. . ~ (PNRM)
Step 3: carryout a loop for each set of bandwidths and the mixing parameter on y,
i=1(1)n.
Step 4: STOP

at location

3. Application and discussion of results

The Genetic Algorithm toolbox in Matlab is used to obtain the optimal locally adaptive band-
widths & in Equation (10) as well as the optimal mixing parameter, \* based on the minimization
of PRESS** criterion. A multiple response problem is used in order to compare the statistical per-
formance of the proposed model with the existing OLS and LLR models.

3.1 The multiple response chemical process data

The following problem as given in He et al. (2009, 2012) was to obtain the setting of the explanatory
variables z7 and xo (representing reaction time and temperature, respectively) that would simul-
taneously optimize three quality measures of a chemical solution y;, yo and ys (representing yield,
viscosity, and molecular weight, respectively). The process requirements for each response are as
follows:

Maximize y; with lower limit L = 78.5, with target value ® = 80; y» should take a value in the
range L = 62 and U = 68 with target value ® = 65; minimize y3 with upper limit U = 3300 with
target value ¢ = 3100.

Based on the process requirements a Central Composite Design (CCD) was conducted to establish
the design experiment and observed responses as presented in Table 1.

3.2 Desirability function

The desirability function d,(9,(x)), r = 1,2,--- ,m, assigns values between 0 and 1 based on the
process requirements such that the most undesirable and desirable values are d,.(g,(x)) = 0 and
d,(yr(x)) = 1, respectively. Desirability function is applied in Multi-Response Optimization (MRO),
where responses are classified as larger the better (LTB) for maximizing the response, smaller the
better (STB) for minimizing the response, and nominal the better (NTB) is a two sided transfor-
mation of the response (Pickle, 2006; He et al., 2009; 2012).

(1) For Larger-the-Better (LTB) response, d;(y1(x)) given as:

0 g1(x) < 78.5
N tl
di(n(x)) = § { BT 78.5 < gy (x) < 80 (22)
1 91(x) > 80

s.t x € [0, 1], where the desirability function d;(y1(x)) = d; is a scalar measure, 7' = 80 and
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Table 1.: Designed experiment and response values

Order | & &2 x1 T2 yi Y2 Y3
1 80 170 -1 -1 76.5 62 2940
2 90 170 1 -1 78.0 66 3680
3 80 180 -1 1 77.0 60 3470
4 90 180 1 1 79.5 59 3890
5 77.93 175 -1.414 0 75.6 71 3020
6 92.07 175 1.414 0 78.4 68 3360
7 85 167.93 0 -1.414 | 77.0 57 3150
8 85 182.07 0 1.414 | 785 58 3630
9 85 175 0 0 79.9 72 3480
10 85 175 0 0 80.3 69 3200
11 85 175 0 0 80.0 68 3410
12 85 175 0 0 79.7 70 3290
13 85 175 0 0 79.8 71 3500

&1, & are natural variables, x1, x9 are coded variables and y1, y2, y3 are responses.
Source: He et al. (2009, 2012).

L = 78.5 are the maximum acceptable value and lower limit, respectively; ¢; is taken to be
1. The objective is to maximize the response ¢ (x).

(2) For the Nominal-the-Better (NTB) response, d2(92(x)) is a two sided transformation given
as:

{gz(x%tw}“ 62 < Ja(x) < 65

65—62
~ . R to
d2(y2(x)) = {65;5;326(5)()} 65 < 3)2(X) <68 (23)
0 otherwise

s.t x € [0,1], where da(92(x)) = d2, L = 62, U = 68, T = 65 is the target value of the
response ¢2(x). However, for RSM data, the parameters values of ¢; and t9 are taken to be
1 (Castillo, 2007; Wan, 2007; He et al., 2012).

(3) when the response is of the smaller-the-better (STB) type, d3(ys(x)) is given as:

1 U3(x) < 3100
~ —73(x t2 ~
da(i(x)) = 3 { S b 8100 < () < 3300 (24)
0 3(x) > 3300

s.t x €0,1],

where d3(g3(x)) = d3, T'= 3100 and U = 3300 are the minimum acceptable value and upper limit,
respectively. The objective is to minimize the response §3(x).

3.3 The overall desirability

According to Ramakrishnan and Arumugam (2012), the overall desirability function D(x) is the
geometric mean of the individual desirability functions given as:

D(x) = V/(d1(1(x)) x da(§3(x)) x d3(73(x)) (25)

The higher the overall desirability function, D(x), is an indication of a higher overall satisfaction
for all responses.
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3.4 Transformation of data from Central Composite Design (CCD)

Following nonparametric regression procedures in RSM, the values of the explanatory variables are
coded between 0 and 1. The data collected via a Central Composite Design (CCD) is transformed
by a mathematical relation:

min(x,q) — o
= 26
Tnew min(a:old) — max(atold) ( )

where %, is the transformed value, z( is the target value that needed to be transformed in the
vector containing the old coded value, represented as z,;q, min(x,;q) and max(x,q) are the minimum
and maximum values in the vector x4 respectively (He et al., 2012). The natural or coded variables
in Table 1 can be transformed to explanatory variables in Table 2 using equation (26). Target points
needed to be transformed for location 1 under the coded variables are given below:

Target points zg: -1, -1; min(x,q): —1.414, —1.414; max(zqyq): 1.414, 1.414.

min(x,q) — o

Tnew = min(zq) — max(Toyg)
—1.414 — (-1
Explanatory variable x; : T11 = (—T.414) ((1 434) = 0.1464.
—1.414 — (-1
Explanatory variable x5 : T1g = (=1) = 0.1464.

(—1.414) — (1.414)

Target points needed to be transformed for location 2 under the coded variables are given below:
Target points zg: 1 -1; min(zyg): —1.414, —1.414; max(zyq): 1.414,1.414.

min(meld) — 20

Tnew = min(zyq) — max(req)
—1.414 — (1
Explanatory variable z7 : To1 = q (1 114) (1( 4)34)) = (0.8536.
—1.414 — (-1
Explanatory variable x5 : Tog = ((( 1.414) ((1 43)) = 0.1464.

Target points needed to be transformed for location 6 under the coded variables are given below:
Target points zg: 1.414, 0; min(xyq): —1.414, —1.414; max(zyq): 1.414,1.414.

min(l'eld) — 20

Tnew = min(zyq) — max(Teq)

. —1.414 — (1.414)
Explanatory variable zy : Tg1 = (—1.414) — (1.414)) = 1.0000.

—1.414 — (0
Explanatory variable x5 : Tea = ((_(1 114) (1( 4?4)) = 0.5000.
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Repeating the process up to location 13, then we obtain the entries for explanatory variables x; and

9, respectively, in Table 2.

Table 2.: Chemical Process Transformed Data

i 1 ) yr | Y2 | Y3

1 | 0.1464 | 0.1464 | 76.5 | 62 | 2940
2 1 0.8536 | 0.1464 | 78.0 | 66 | 3680
3 1 0.1464 | 0.8536 | 77.0 | 60 | 3470
4 | 0.8536 | 0.8536 | 79.5 | 59 | 3890
5 | 0.0000 | 0.5000 | 75.6 | 71 | 3020
6 | 1.0000 | 0.5000 | 78.4 | 68 | 3360
7 | 0.5000 | 0.0000 | 77.0 | 57 | 3150
& | 0.5000 | 1.0000 | 78.5 | 58 | 3630
9 | 0.5000 | 0.5000 | 79.9 | 72 | 3480
10 | 0.5000 | 0.5000 | 80.3 | 69 | 3200
11 | 0.5000 | 0.5000 | 80.0 | 68 | 3410
12 | 0.5000 | 0.5000 | 79.7 | 70 | 3290
13 | 0.5000 | 0.5000 | 79.8 | 71 | 3500

The optimal values of the parameters of the proposed model and the LLR for each response
variable are presented in Table 3.

Table 3.: Optimal values of the tuning parameters and mixing parameter of the proposed model and
the LLR model for the multiple response chemical process data

Proposed Model LLR
Response N* (WRaw) C* (WRaw) N* (WResid) C* (WResid) 2 N* C*
Y1 3.6241 1.2876 3.0413 0.0798 0.9457 | 3.0971 0.0797
Y2 6.5583 0.1246 1.2854 0.0952 1.0000 | 1.2297 0.0952
Y3 1.9999 0.0664 1.2050 0.0935 1.0000 | 4.8181 0.0896

Based on the production requirements for the responses y;, Table 3 highlights the optimal values
of tuning parameters for both raw N*(WHaw) C*(WFW) residual (N*(WHesid)  Cx(Whesid))
as well as the optimal mixing parameter A\* for the proposed model and the LLR optimal tuning
parameters (N*, C*¥).

The locally adaptive optimal bandwidths for raw and residual multiple response case for the
proposed and LLR models via PRESS** criterion are presented in Tables 4 and 5 respectively.

Table 4.: Locally Adaptive Optimal Bandwidths for the Proposed Model

Optimal Bandwidths for W54 | Optimal Bandwidths for W15

i Y Y2 Y3 Y Y2 Y3

1| 0.2792 0.5475 0.0057 0.3972 0.1209 0.1501
2 | 0.2789 0.4978 0.2513 0.2733 0.0955 0.0549
3 | 0.2791 0.5724 0.1816 0.3559 0.1336 0.0819
4 | 0.2785 0.5848 0.3210 0.1495 0.1400 0.0279
5 | 0.2794 0.4356 0.0322 0.4715 0.0637 0.1398
6 | 0.2788 0.4729 0.1451 0.2403 0.0827 0.0961
7 | 0.2791 0.6097 0.0754 0.3559 0.1527 0.1231
8 | 0.2788 0.5973 0.2347 0.2320 0.1463 0.0613
9 | 0.2785 0.4232 0.1849 0.1164 0.0573 0.0806
10 | 0.2784 0.4605 0.0920 0.0834 0.0764 0.1166
11| 0.2784 0.4729 0.1617 0.1082 0.0827 0.0896
12 | 0.2785 0.4481 0.1218 0.1329 0.0700 0.1051
13 | 0.2785 0.4356 0.1916 0.1247 0.0637 0.0781
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Table 5.: Locally Adaptive Optimal Bandwidths for LLR Model

1 Y1 Y2 Y3

1 | 0.4045 0.1156 0.6669
2 1 0.2783 0.0913 0.1755
3 103624 0.1278 0.3149
4 |1 0.1522 0.1339 0.0360
5 | 0.4802 0.0609 0.6138
6 | 0.2447 0.0792 0.3880
7 |1 0.3624 0.1461 0.5275
8 1 0.2363 0.1400 0.2087
9 | 0.1186 0.0548 0.3083
10 | 0.0849 0.0731 0.4943
11 | 0.1102 0.0792 0.3548
12 | 0.1354 0.0670 0.4345
13 | 0.1270 0.0609 0.2950

The goodness-of-fit of the models for the chemical process data are shown in Table 6.

Table 6.: Goodness-of-fit of the Models for the Chemical Process Data

Response Model DF  PRESS*™ PRESS SSE MSE R? Ridj

Y1 OLS 7.0000  0.3361 2.3525 0.4962 0.0709 0.9827 0.9704
LLR 4.7810  0.2063 3.0148 0.3113  0.0651 0.9892 0.9728

Proposed 4.7093  0.2046 2.9781 0.2909 0.0618 0.9899 0.9742

Y2 OLS 7.0000 28.8726  202.1082 36.2242 5.1749 0.8997 0.8281
LLR 4.0000  9.4343  129.4141 10.0000 2.5000 0.9723 0.9170

Proposed 4.0000  9.0889  124.6763 10.0000 2.5000 0.9723 0.9170

Y3 OLS 7.0000 159080 1113600 207870 29696 0.7590 0.5868
LLR 5.8380 40779 508170 92621 15865 0.8926 0.7795

Proposed  4.0000 44326 514370 65720 16430 0.9238 0.7714

The results in Table 6 clearly explain the goodness-of-fit statistics for multiple response chemical
process data. Obviously, the proposed model is superior in terms of minimum values for the PRESS**
within two responses (y; and y2), minimum SSE across two responses (y; and y3) and a tie with LLR
in »» and minimum R? across the two responses (y; and y3) and a tie with LLR in yo. Generally,
it implies that the proposed model produces a more practical and reliable results in eight cells, and
with a joint performance in other four cells, which obviously guarantee for a better model. There
is correlation between Table 6 and Figure 1 in terms of the three residual plots for all the data
points. The plot for y; residual has a slightly better explained variation for the proposed model
over LLR, but clearly outperforms the OLS which is also confirmed in Table 6. The data points
for yo residual coincide between the proposed model and the LLR but differ with the OLS by way
of improved explained variation. The data point for the proposed model in y3 residual has higher
explained variation over LLR and OLS. Apparently, these observations indicate that the proposed
model offers more accurate fits over LLR and OLS.

Table 7.: Model optimal solution based on the Desirability function for the multiple response chemical
process data

Model T T (0 Y2 U3 dy do ds D(%)
OLS 0.4449 | 0.2226 | 78.7616 | 66.4827 | 3229.9 | 0.1744 | 0.5058 | 0.3504 | 31.5800
LLR 0.5155 | 0.3467 | 78.6965 | 65.0328 | 3285.9 | 0.1310 | 0.9891 | 0.0703 | 20.8837
Proposed model | 0.4845 | 0.3641 | 78.8072 | 65.7368 | 3251.2 | 0.2048 | 0.7544 | 0.2441 | 33.5343

The overall goal of the desirability function as given in Table 7 is to determine an operating
conditions (setting) of the explanatory variables that would simultaneously optimize the responses.
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Figure 1.: Plots of Model residuals for the multiple response chemical process data

The operating settings for the proposed model optimize the responses with a higher desirability as
compared with LLR and OLS. Therefore, it is established that the contribution from the proposed
model satisfies the production requirements over LLR and OLS.

3.5 Discussion of results

The results presented in Table 6, shows that PNRM, either completely or conjointly, provides the
best results in terms of all the statistics for y; and yo. For the y3, the PNRM offers the best results in
two out of the six statistics for comparison. Interestingly, PNRM gives the best PRESS* in y; and
yo. Figure 1 is a reflection of the results presented in Table 6, where the interest is to give a pictorial
display of the measure of variability not explained in the data by OLS, LLR and PNRM models for a
multiple response problem. The obvious from Figure 1, is that PNRM has less variability compared
with OLS and LLR models. Lastly, Table 7, addresses the production or process requirements for
each response, such that ; must not be less 78.5, otherwise the desirability d;(y1(x)) becomes zero.
§2 must lie between the values 62 and 68 inclusive, otherwise the desirability da(g2(x)) takes the
value zero. g3 must not exceed 3300, otherwise the desirability d3(g3(x)) is assign a zero. The model
with the highest overall desirability, D(%) has the optimal settings of the explanatory variable that
will optimize the responses. Hence, PNRM provides the best settings that optimize the response for
the multiple response chemical process data as compared with OLS and LLR models.
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4. Conclusion

In this paper, we considered two existing regression models, the OLS and LLR and proposed a
nonparametric regression model (PNRM) that utilizes the locally adaptive bandwidths of Edionwe
et al. (2016) for smoothing RSM data. The results of the performance statistics obtained from an
empirical data and optimal solutions show that the PNRM regression model performs better than
OLS and the LLR that utilizes the locally adaptive bandwidths of Edionwe et al., (2016). Therefore,
worthy to refer is the remarkable low values of the PRESS** criterion and SSE of the PNRM. This
promises high accuracy in predicting yield, viscosity, and molecular weight, for multiple response
problems. Lastly, the PNRM in Table 7, display higher level of desirability over OLS and LLR
models and as such provided a setting for the explanatory variables that optimized the response for
multiple response chemical process data.
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Appendix

Computer Program Written in Matlab Codes for getting Optimal Bandwidths
parameters for the Proposed Model via the Genetic Algorithm

Function press=my_proposed_model (N)

Input n by 1 vectors of explanatory variables x_1,x_2,...,x k written in Matlab as x1, x2,...,xk;
Input n by 1 vector of response y;

Define first column of model matrices for LLR: const=ones(n,1);

Define n by (14+k) model matrix for LLR: X1=[const x_1,x_2,....xkK];

Assign value to constant e=2.7183;

Assign value to constant n=length(x_1,);

Assign value to constant k=rank(X1)-1;

Assign value to mixing parameter lambda=1.0000 which may be written in Matlab as g=1.0000;
Calculate SSM=sum((y-mean(y)).A2);

%% %% % %% %0 %0 %0 %0 %0 %0 %0 %0 %0 %0 %0 %0 %0 %0 %0 %0 %0 Yo

Get the value of T in equation (10): T=sum(y);

Define N in equation (16)for getting local bandwidths for raw response N(1);
Define C in equation (16)for getting local bandwidths for raw response N(2);
Define N in equation (16)for getting local bandwidths for LLR residuals N(3);

Define C in equation (16) for getting local bandwidths for LLR residuals N(4);

Define N=[N(1) N(2) N(3) N(4)];

Define the local bandwidths selector in equation (10) for raw response as bl=(N(1)*(N(2)*T-
7))/ (T*((N(2)*n)-1));

Define the local bandwidths selector in equation (10) for residuals as
b2=(N(3)*(N(4)*T-y))/(T*((N(4)*n)-1));

%% %0 %0 %0 %0 %0 %o %o %o %o %o %o %o %o %0 %0 %0 %0 %0 %0 %0 %0 %0 %0 %0 % % % % %o

%%% Preallocate dimension for vectors;
ymax=zeros(n,1);yPNRMcv=zeros(n,1);a=zeros(n,1);yPNRM=zeros(n,1);

%%% Get maximum SSE in equation (9);

Assign large bandwidth for getting maximum SSE: bmax=99999999999999999;

for i=1:n;

%%% %% Get diagonal weights matrices for raw response;

wlmax_raw=

((1/e).A(((x1-x1(i))./bmax).A2)).*((1/e) . A(((x2-x2(1))./bmax).A2))- - - *((1/e).A(((xk-xk(i))./bmax).A2));

WWmax_raw=sum(wlmax raw);
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kerweight_max _raw=wlmax_raw./WWmax _raw;

Wmax _raw=diag(kerweight_max_raw);

%% % %% Get diagonal weights matrices for LLR plus LLR residuals;

wlmax_ residuals=

((1/e).A(((x1-x1(i))./bmax).A2)).*¥((1/e) . A(((x2-x2(1))./bmax).A2))- - - . *((1/e).A(((xk-xk(i))./bmax).A2));
WWmax _residuals=sum(wlmax_residuals);

kerweight_max residuals=w1lmax residuals./WWmax_residuals;
Wmax_residuals=diag(kerweight_max_residuals);

%% % %% %0 % % %% %o %o %0 % %0 %0 %0 % %0 % % % % % % % % % %0 %0 %0 %0 %0 %0 %0 %o %o %o %o To %o Yo To

Define the n by n identity matrix in equation (16) v=eye(n,n);

Define LLR Hat matrix in (16) v2=X1*((X1"*Wmax_raw*X1)1"*Wmax_raw);

Define matrix [ I-x_iA’(LLR) (XA’(LLR) W XA((LLR) ) )A(-1) XA’(LLR) W_i]] in (16) vt1=v-v2;
%% %% Get the ith row of the n by n PNRM Hat matrix;

Hat_max=

X1(1,)* (X1 *Wmax_raw*X1)\ (X1*Wmax_raw))+X1(i,:)*((X1"*Wmax_residuals*X1)\ (X1"*Wmax _residuals*vt1);
%% %% % Get the PNRM estimate of the response based on bmax;

ymax(i)=Hat_max*y;

end

Calculate SSEmax=sum((y-ymax).A2);

%% %% %% %% % Get diagonal weights matrices for cross validation and PNRM estimate of response
%% %% %% %% % for optimal bandwidths

for i=1:n;

wl_raw=

((1/e).A(((x1-x1(1))./b1).A2)).*((1/e).A(((x2-x2(1))./b1).A2))- - - *((1/e).A(((xk-xk(i))./b1).A2));
WW_raw=sum(wl_raw);

kerweight_raw=w1_raw./WW _raw;

%% % %% % %% % %0 %% %0 % %0 %0 %0 % % % % % % % % % %o

wl_residuals=

((1/e).A(((x1-x1(1))./b2).A2)).*((1/e).A(((x2-x2(1))./D2).A2))- - - F((1/e).A(((xk-xk(i))./b2).A2));
WW _residuals=sum(w1_residuals);

kerweight_residuals=w1 _residuals./WW _residuals;

%% % %% % %%%% Delete the ith of the arrays for leave-one-out regression procedure
Kerweight_raw(i,:)=[];

kerweight_residuals(i,:)=[];

Y(ivz):[];

X1(i,:)=[;

Define the diagonal weight matrix for raw response W_raw=diag(kerweight_raw);

Define the diagonal weight matrix for LLR plus LLR residuals

W _residuals=diag(kerweight_residuals);

Define the (n-1) by (n-1) identity matrix v=eye(n-1,n-1);

Define LLR (n-1) by (n-1) Hat matrix v2=X1*((X1*W_raw*X1)\ X1"*W_raw);

Define matrix [ I xiA’(LLR) (XA’(LLR) Wi XA((LLR) ))A(-1) XA’(LLR) W] in (16) vt2=v-v2;
Define LLR coefficients for raw response in the ith data point: a2=(X1"*W _raw*X1)\ X1"*W _raw*y;
Define LLR coefficients for residuals in the ith data point:

a3=(X1"*W residuals*X1)\ X1'*W _residuals*vt2*y;

%%%% Restore original dimensions of arrays

Kerweight_raw=w1_raw./WW _raw;

kerweight_residuals=w1 _residuals./WW _residuals;

n by(1+k)vector of LLR model matrix X1=[const x1 x2 ... xk];

n by 1 vector of response y;

%%%%% Get the ith leave-one-out estimates haty _(i,-i)A((PNRM )) of response y_i, i=1,2,...,n, in equation
(16)

yPNRMcv(i)= X1(i,:)*a2+g*X1(i,:)*a3;

%%%%% Get the ith estimates haty _iA((PNRM)) of response y_i, i=1,2,...,n.

W _raw=diag(kerweight_raw);

W _residuals=diag(kerweight_residuals);

v=eye(n,n);

V2=X1*((X1T*W_raw*X1)\ X1"*W _raw);

Define matrix | I xiA’(LLR) (XA’(LLR) W_i XA((LLR)))A(-1) XA’(LLR) W_i]] in (16) vt3=v-v2;
Hat_PNRM=

X1(1,:)*((X1T*W raw*X 1)\ (X1T*W raw) ) +g*X1(i,:)*((X1"*W_residuals*X1)\ (X1*W _residuals*vt3));
Define ith element of the ith row of the PNRM Hat matrix a(i)=HPNRM(1,i);

Get PNRM estimates of response yPNRM(i)=Hat_PNRM*y;

end

degree of freedom=n-sum(a),

PRESS=sum((y-yPNRMcv).A2),
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SSE=sum((y-yPNRM).A2),

R_squared=100*(1-(SSE/SSM)),

PRESS*=PRESS/(n-sum(a)),
PRESS**=PRESS/((n-sum(a))+(n-k-1)*(SSEmax-SSE) /SSEmax),

%% % %% % % %% %% Conditional statement to ensure local bandwidths are all %%%% % %% %%%% within
(0,1];

if PRESS_DOUBLE_STAR<O;

pdstar=919191919;

elseifmin(b1)<0.0000;

pdstar—7888833888:

elseifmax(b1)>1.0000;

pdstar=522222222;

elseif min(b2)<0.0000;

pdstar=888888888;

elseif max(b2)>1.0000;

pdstar=222222222;

else pdstar=PRESS/((n-sum(a))+(n-k-1)*(SSEmax_LB1-ySSEb) /SSEmax_LB1);
end

press=pdstar;

%% %% Display b1, b2,

Note: This computer programme is coupled with the genetic algorithm tool in Matlab using
my_PNRM _program as fitness function.
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