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Abstract. The estimation of the two shape parameters of the Johnson’s System of Distributions (JSD) via the Maximum
Likelihood Estimation (MLE) method has received considerable attention in the literature. This paper is a research
expounded in this direction, albeit via the methods of least squares and moment. The location and the scale parameters
of the JSD are obtained in closed form under certain regularity conditions. In order to circumvent the computational
agony in the estimation procedure, a third shape parameter is introduced by means of the pivotal quantity method. The
utility of the method is illustrated using both simulated and real-life data.
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1. Introduction

Fitting distributions to data has a long history and many different procedures have been advocated (George
et al., 2009). Johnson in 1949, derived a system of curves with various shapes flexibility to represent a set
of empirical data (George and Ramachandran, 2011). The shape parameter in the Johnson system aimed at
accommodating for the various flexibility from normal random variates was however unable to influence
the behavioural pattern of the underlying normal distribution. So in order to make the behavioural pattern
of the underlying distribution flexible, Soyinka et al. (2019) introduced the third shape parameter 5. The
introduction of the new shape parameter was achieved by employing the exponential power distribution
as the underlying distribution. Exponential power distribution is a family distribution that accommodates
normal distribution when 5 = 1, laplace distribution when 8 = 0.5 and many other distributions depending
on the value of the newly introduced shape parameter which is data dependent (Olosunde and Soyinka,
2019). The advantage of JSD to the modeling of empirical observations cannot be over emphasized because
of its practical relevance to real life processes. Some of which include the ability to model non-normal
heteroscedastic data with/without lower and/or upper reference points and generate different behavioural
patterns from varying distributional shapes depending on random combination of mean-variance-skewness-
kurtosis properties (Andrea, 2016). Also, according to Rennolls and Wang (2005), the four parameter
JSD was first introduced into forest literature by Hafley and Schreuder (1977), and since then it has been
widely used in forest diameter (and height) distribution modelling (Hafley and Buford, 1985; Knoebel and
Burkhart, 1991; Zhou and McTague, 1996; Kamziah et al., 1999; Li et al., 2002; Scolforo et al., 2003; Zhang
et al., 2003). Recently JSD was used in prediction of life birth (Soyinka et al., 2019) and in the modeling of
diameter distributions of nauclea diderrichii stands (Ogundipe et al., 2018). So due to empirical importance
of JSD, the need to obtain the estimate of all its parameters in closed form via exact solution to ensure
accuracy in modeling, and in case that is impossible, to ensure that the numerical solution converged is a
necessity. Considering Lindsey (1999) and George and Ramachandran (2011), the uni-dimensional random
variable (rv) X for every « € X is said to be a member of the Johnson families of distribution with different
normalizing transformations to define lower bounded Johnson system .Sy, bounded Johnson system Sp and
unbounded Johnson system Sp respectively if it has the probability density functions (pdf’s):
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where z = #3*. The parameters o, 3 > 0 and 6 > 0 are the shape parameters that can be obtained
through maximum likelihood or moments approach, while a and A > 0 are the location and scale parameters,
respectively.
Note:

(1) pdf (1.1),(1.2) and (1.3) reduce to the normal distribution related JSD when 5 = 1.
(ii) Each of the three cases reduces to the standardized exponential power distribution (SEPD |0, 1, 3])
when the exponent in pdf’s (1.1)-(1.3) is defined as a random variable.
(iii) The log-likelihood function is non-regular with respect to the location ‘a’ and scale ‘A’ parameters.

Though the current form of the pdf (1.1), (1.2) and (1.3) cannot give a closed form solution of the location
a’ and scale parameter ‘\’ because of the violation of the regularity condition, this study is aimed at estab-
lishing propositions via pivotal approach and shape dependent quantile limits to ease the estimation of all
JSD parameters via least square and moments approach while maximizing the obtained parameter estimates
through its likelihood function using r package ‘bbmle’ (Bolker, 2020). Finally, the deviance statistic was
used to determine the effectiveness of the moment and the MLE approach.

2. Materials and method

2.1 Pivotal quantity for the scale and location parameters

DEFINITION 2.1 (Pivotal Quantity). A pivotal quantity (P) for a parameter 6 is a random variable
P(X|0 = [a, \]) whose value depends on both (the data) X and on the value of the unknown parameter
0 but whose distribution is known to be independent of 0. For the case of the normal distribution N (a, \?),

the pivotal quantity py = *3* and py = ( ) has distributions N (0, 1) and x? that are independent of

a and \2. Therefore, the quantities py and pg are pivotal quantities for a and \* respectively (Toulis, 2017;
Mood, 1974).

PROPOSITION 2.2 If X be defined for the pdf (1.1), (1.2) and (1.3) then a rv P, for each of the transfor-
mation function p € P has the gamma distribution

_ ) 280 o1(L 9). _
f(p)— %F(H;B)eXp[ (Oé+5p)] I'(55,2);—00 <p<o00,8>0. @1

Proof. Note that z = u in (1.1), (1.2) and (1.3). The transformation and its derivatives can be obtained

as p(:p|a A) = In (%2 ) = 2 = a + AeP which implies dz = AePdp. p(z|a, \) = (A+a —

a + (Hep) with dx = (1+ p)de and finally we have p(x|a, \) = sinh™ ( %) = ¢ = a+ Asinhp with
dx = X cosh pdp. Substituting for p and the derivatives in (1.1), (1.2) and (1 .3) and simplifying the equation
f(p) = f(x)5E we have (2.1). .

):x_
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Note: Since (2.1) is independent of location parameter ‘a’ and scale parameter ‘)’ then each of the trans-
formation functions is a pivotal quantity for the location ‘a’ and scale ‘\’ parameters.

2.2 rth moment estimation of JSD

PROPOSITION 2.3 The rth moment is

E(p") = r= (2?>TZ§ZOTCZ»(— ¥ (=3

2B

'r+1 i

) Jo b2 Lexp(=h)dh. @2

2725

Proof. From (2.1) using the change of variable technique with the transformation h = %(a + 6p)?8 and
evaluating [ fh p" f(p)dp we obtain (2.2). Implying that for a complete gamma function the first E(p) and
second E(p?) moments for the rv (p) are
1 1
228 (L) 25 T(2 21+2/3a1"( )

1(Z2_"'8) 1 26/ _ . .

5 ( il % a) and 52 ( il % F(2B + a? respectively. Other higher moments
of rv (p) can be obtained in the same way along side its variance, skewness and kurtosis. [ ]

Substituting the various pivotal transformation functions and simplifying further, we obtain the first mo-
ment and variance for the initial rv € X as follow:

Table 1: First moment and variance of JSD rv (z) in Sy

JSD Mean Variance
/(L 257 (L
Sr | a+ Aexp <% <%1(‘3)—a>) A2 (exp(H)—exp%(*l(f)—Oz))
283 2B
1 B 1 2_
) 228 (d) 1 228 p(d)
exp<6< F(%? _a>> exp5< F<%)ﬁ _a>
Sg a—+ A — A2 |exp(H) — —
1 220 1(}) L[ 228
+exp< . —a 1+exp5< s —a)
%1’* s %I‘ 1
Su | a+ Asinh (% (*1(;) - a>) 22 (exp(H) — sinh? <% <%1()B) — a)))
283 2p

where H is the obtained second moment of rv p. Subsequently the skewness and kurtosis of JSD can be
derived as

N (exp(I) — 3exp(J + H) + 2exp(3J)) (2.3)

M (exp(K) — dexp(J + 1) + 6exp(2J + H) — 3exp(4J)) (2.4)

where H=second moment of p, I=skewness of p, J=first moment, and K=kurtosis of p. So putting H, I, J and K
in (2.3) and (2.4), we obtain the estimate of the skewness and kurtosis of JSD for the rv X for each of the three
cases under study. Finally, since the cumulative distribution function (cdf) of (2.1) tends to the standardized
exponential power distribution (SEPD), either as complete or incomplete gamma function as the case may be,
then the maximum likelihood estimate of ‘3’ though not in closed form can be obtained using SEPD nomalp
codes in r environment (Mineo and Ruggerri, 2003b; Olosunde and Soyinka, 2018). So, having obtained ‘5’
via normalp, its value can be substituted into E(p) and E(p?) to obtain ‘4" and ‘4" provided the estimate of
‘@ and ‘X’ have been earlier obtained. Having established the Johnson transformation function as a pivotal
quantity for the location and scale parameters and its rth moment expressions, we proceed to compute the
probability that an unknown random interval of the transformation function contains the estimate of the
parameter a and A. Hence, our next step is to make a proposition that will serve as a foundation to the
estimate of the location a and the scale A parameters.
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PROPOSITION 2.4  Letp ~ F(%, 2) from (2.1) and let V be a random variable distributed as standardized

exponential power distribution SEPD (0,1, 3) then a new random variable T defined as T = %5’) has the
pdf

_ B8 28\~ 5
f(t)_Beta,($7$) (1—|—t ) B 2.5)

Proof. Supposing p and v are independent f(p,v) = k% exp(—% [1)25 + (a+ (5p)25] ), then using change
of variable technique with Jacobian % and v = w, we obtain the joint density f(p,v) =
~ eXp(_sza [1 + #2]) which upon further integration f(t) = [ f(¢, w)dw yields the marginal (2.5), where

k=251 + ). m

COROLLARY 2.5 The cdf of (2.5) is
F(t) = beta (t, + 2i> 2.6)

Proof. From (2.5) using the transformation tan @ = T, the integral fOT (sin 9)%71((:03 9)%71d9 is the reg-
ularized incomplete beta function (2.6). [ |

DEFINITION 2.6 (Interval Estimation) Let 1,2, .., T, be a random sample from the density f(x|0 =
[, B,0,a,\]) (1.1)-(1.3). Let p(x|a, \) be a pivotal quantity whose distribution is independent of (a, \);
then the two statistics T1 = t(x1,z2,..,x,) and Ty = t(x1,x2,..,Ty) defined over a percentile interval
Pr(t; < p(xla,\) < t2) = ~ such that t; < to; is said to be the lower (t1) and upper (t2) confidence
limits respectively for the pivot p(x|a, \) within 100y percent confidence interval, where +y is the confidence
coefficient and does not depend on (a, \) (Olosunde and Soyinka, 2018).

From (2.5) the area spanned by the entire X-domain within the interval ¢; < tg is fttlz ft)dt = F(t) =
F(te) — F(t1) = v%, 0 < v < 1. Suppose that the probability values for the lower and upper confidence
_ 1+

limit are F'(t1) = 1_T7 and F'(t2) = —5 respectively then from (2.6) we can deduce

(tiita) = [beta™ | (552, 35, 35) | sbeta™ | (52 55 35) || @.7)

where (2.7) is the interval estimate of the pivot value (¢1,t2), which is the regularized inverse incomplete
beta function. Likewise the point estimate of the pivot value ¢ for any arbitrary probability value 7 is

t = beta™! (fy, %, %) 2.8)

Note: Using codes in R environment, we obtain the pivot, interval or point estimate for various confidence
coefficient 0 < v < 1 from (2.7) and (2.8).

2.3 Estimation of JSD parameters
Estimation of the location a and the scale parameter X via least square approach

If for every observed values x1, xa, .., x,, there exist a random interval (z < [a, A],z > [a, A]) which spans
an area <y over a percentile scale; then there exist a corresponding pivot interval (¢1(x|a, \); ta(z|a, \))
matching each observed value which spans the same area.

DEFINITION 2.7 Let x1, 2, .., x, be a random sample from the density f(xz|0 = [a, 3,9, a,N]), if x1 <
Ty <, .., < x, represents the relative standing of each observed value after ordering in ascending order,
then the ordered pair xj,t; for j = 1,2,..,n signifies the ordered observed values and its corresponding
pivot values which occupy the same theoretical probability area j/n (George and Ramachandran, 2011;
Olosunde and Soyinka, 2019).
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Substituting v = j/n in (11), we obtain the desired pivot values ¢; for each ordered observed value
assuming equal cumulative increase that reflects relativity within observations. Next we obtain the least
square estimates of the location ‘a’ and scale ‘\’ parameters from the linear regression of ordered pair x;, ;.

Table 2: The transformation function, the regression model and the estimator for the location and scale
parameters scale (\) parameters of JSD

Tansformation function p(z|a, A) | Linear regression model (¢;, z;) | Location parameter ‘a’ estimate Scale parameter ‘\’ estimate
c—a o t 2 t nyr welD (S, @)(S) ')
In (45*) zi=atA+ B Toa i @ “><E"(1”>2 )
. (¢ _ (¢ ny 1T (i =) (X0, (r)
111<]’f) wr-:a-s—/\(ﬂ('?),)-&-E z—2 fi(ﬁ(":,) (i 3 '1+2
Aa—z v 1+e(ti) n z,,,1 T+elt) (nZ“ . 1+(<')>) (Z" e <<r>))
gnh—1 (2= _ ” = _ A i = h(t; i  sinh(t:
sh ! (757) 5= 0+ Asinh (1) + o aThh) | TR

E-Error

2.4 Maximum Likelihood Estimation (MLE) of the shape parameters (o and d)
From the log-likelihood function of (2.1)

In L(p) =nln <%215F(1 + %)) — 15 (a+6p)*P 2.9)

2

the derivative of (2.9) with respect to o and ¢ are OI%L( =83 (a+dp)* " and 9l L(p ) — 2 —

BY " pi(a+ 5pi)**7',V B € R. Likewise the Fisher information matrix I(cv, §) of JSD can be obtained
by arranging the following expectations of the second derivatives log likelihood function into a 2x2 matrix

9% 1In L(p) 8%In L(p)
I(a,8) = — (E(a o7 ))7E(82(?3%%p))
E(5am ) E(—%5)
diagonals tends to zero asn — oo V 8 > 1. This implies that as n increases, I («, §) becomes large, variance
of and becomes small and the sampling of different initial values of & and ¢ from the iterative procedure
(g”) = <§n_11> + (I(dn_l, On_1)"18(dn_1, 5n_1)> will lead to mle estimates of & and ¢ within the
n n—

close neighbourhood of the initial values of &, and 50 where S(dy,—1, Sn_l) =

) . Note: The standard error of the Fisher estimates in the leading

(3111}(17) 91n L(p) )T
Ja 7 06

that the estimation of é& and § from the polynomial obtained via the log likelihood first derivatives cannot

be obtained in closed form due to polynomial power that is not an integer; we estimate the initial values of

év, and 0, from the first and second moments of rv(p) and eventually obtain the parameter value from the

iterative procedure that maximizes (2.9).

. Owing

PROPOSITION 2.8  The estimate (év,,d,) of the shape parameter (6., 8) are

T (&) 12 1 .27 o
53_E(p2)—[E(p)]2 F(é)—Fz(B)FQ(%) and &, = F(if; — 0o E(p) .10

Proof. Evaluate the variance of rv(p) E(p?) — [E(p)]? and make 82, the subject of the formula. Afterwards,
put the obtained value of d,, into the first moment and solve for ¢,. Starting with (&, d,) as the initial values,

we obtain the values (&, 5) that maximizes the log-likelihood function of (2.9) using ‘bbmle’ package in r
environment. [ |
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2.5 Properties of JSD

Soyinka et al. 2019, established that the incomplete gamma characteristic function of the lower Sy and
bounded Sg JSD in series form is

it o itgzg )" ntl _~( ntL
o) = eXEE_—S Iy, (#2) [V(r(ji?)) de) s<p<u @l
26

Note: Equation (2.11) converges to a finite value via ratio test of convergence. Likewise, the characteristics
function of the unbounded Sy JSD is

_ ita

¢(ﬁ)=:E§BL——L)'§:QD (%22%)"r(%i§)' (2.12)

1 n=0 I'(n+1
1"(25> (n+1)
In addition, the Rényi entropy of order J for JSD is
k 1
Hj(p) = 1Il (3) + mln J (2.13)

This suggests that the Rényi entropy is dependent on the shape parameter(3) and thus pre-fixing the shape
parameter will lead to unreliable result.
The rth moments of the rv(p) was obtained as

E(p") = —ézll)a)‘; oo Ca(=1)ma7m255 |y (55 ) =y (5h5)| @

for Sz, and Sp whose domain is finite (s < p < u) € R, and for the Sy whose domain spans the entire
real line the rth moment is

BW) = (55 S G170 25T (). s
2B

Using the ratio test of convergence, the series solution in the rth moment (2.14) converges to a finite value
provided r — n < n.

3. Results and discussion

3.1 Applications

A real life data and a simulated data was used to demonstrate all the results obtained. First a practical data
on time taken by pilot to make a known corrective action during flight as obtained by Lehmann and Romano
(2005) was first considered. The second and third examples are from simulated data with sizes n = 500
and n = 1000000 generated in R software using normalp package. Codes to compute various estimates are
written in R environment.

EXAMPLE 3.1 Twenty pilots were tested in a flight simulator and the time for each of them to complete a
certain corrective action was measured in seconds. The results are as follow: 5.2, 5.6, 7.6, 6.8, 4.8, 5.7, 9.0,

6.0,4.9,7.4,6.5, 7.9, 6.8, 4.3, 8.5, 3.6, 6.1, 5.8, 6.4, 4.0.

The data from each example were evaluated assuming Sy, Sp and Sy JSD. Kenneth and David (2013) on
shifting negative AIC values.

Table 3 showed the estimates of the JSD parameters obtained via the moment and the MLE approach.
Table 4 revealed the Kolmogorov Smirnov test of the goodness of fitted model to the samples. The p—value
for the KS test are all > 0.05 indicating that the JSD distribution fits the data. Finally in Table 5, following

http://www.srg-uniben.org/



On Johnson’s system of distribution...

88

Table 3: Parameters estimates and standard error of JSD for the different examples with respects to the
various cases in the study

Example | Parameter Case 1 Case 2 Case 3 I}
Example 1 a 2.5130(0.3328) -3.1317 (0.8368) 4.4005(0.1859) 1.5434
A 1.9968 (0.1716) 14.8665 (1.3273) 2.9533

Moment 0 1.0974 (0.0022) 0.3758 (0.002) 2.2498 (0.0022)
a 0.0742 (0.0273) -0.1766 (0.0061) 0.8155 (0.0047)
MLE ) 1.6309 (1.176x10~7) | 0.4874 (6.127x107%) | 0.7786 (1.021x107°)
a -0.7073 (1.2736x1075) | -0.1044 (3.016x1075) | 0.2129 (3.251x1077)
Example 2 a 0.7795(0.1756) -4.8955 (0.4138) 2.7237(0.0981) 2.5009
A 2.02534 (0.0902) 15.0901 (0.6607) 2.9879 (0.1293)
Moment 1) 1.82768 (0.0005) 0.5174 (0.0001) 2.78495 (0.0348)
a -0.2609 (0.006) -0.5572 (0.0126) 0.7187 (0.002)
MLE ) 0.7934 (6.2x107%) 0.346 (1.204x107°) | 0.5827 (9.109x10~%)
o 0.0144 (1.358x107°) | -0.7323 (4.339x107%) | 0.3204 (5.585x10~%)
Example 3 a 0.6638(0.0023) -6.7178 (0.0055) 3.2112(0.00131) 2.6727
A 2.6466 (0.0012) 19.6779 (0.0088) 3.8995 (0.0017)
Moment ) 1.9141 (9.12x1077) 0.5334 (6.47x1077) | 3.1986 (7.33x1077)
e -0.2999 (1.4573x10~7) | -0.7463 (2.077x10~") | 0.9193 (2.15x10™ ")
MLE 1) 0.5075 (0.0576) 0.5784 (0.211) 0.4252 (0.9311)
a 0.4894 (0.0146) -0.4651 (0.0065) 0.4377 (0.03455)
Table 4: Kolmogorov-Smirnov test on Example 1
Fx Case 1 Case 2 Case 3
0.1453 0.0014 0.9802 0.2393
0.3643 0.055 0.1983 0.6612
0.2129 0.1501 5.44x1077 0.0928
0.2079 0.352 8.17x10~ 1 0.0067
0.0522 0.2498 1.036x10~2Y 9.788x 10~ "
0.01 0.094 1.867x10~*8 1.03x10~1Y
0.0073 0.098 9.82x107%¢ 1.14x10-12
Deai(p — value) | 0.2867 (0.9627) | 0.7143 (0.053) | 0.5714 (0.2121)
Table 5: Deviance statistics for moment and ML estimates with AIC, BIC estimate of 8 > 1
Deviance for Deviance for AIC AIC BIC BIC
moment estimate MLE g>1 =1 g>1 g=1
Example 1 S}, 9.098 1.2805 7.527 2.6064 4711 4.859
Sp 5.373 0.7277 9.4478 5.0321 5.2638 3.9672
St 1.955 4.693 12.18 8.4493 1.2986 2.2722
Example 2 Sy, 124620 1735.85 174.7 1793.58 32.244 1723.42
Sp 246.53 604.28 182.45 899.33 1.0558 591.85
St 74822.1 186.4 205.3 514.13 15.577 173.97
Example 3 S}, 2.6 x 10° 6.3 x 10° 1.5 x 10° | 1.9 x 10° 237.1 6.3 x 10°
Sp 1.2 x 10° 2.4 x 10° 4.2 x10° | 1.1 x 10° | 3.9 x 10* | 2.4 x 10°
Su 4.0 x 108 7.3x10° [ 55x10° | 1.9 x 10° | 4.7 x 10* | 7.3 x 10°

the estimates of (&, 5) from the moment and the MLE approach, we determine the estimate with the least
null deviance, since residual deviance is a difference of two null deviance (Helie, 2006). For each examples
in the row of Table 5, three different analysis were evaluated assumming S7,,Sp and Sy JSD making nine
analysis in all. The deviance statistics from MLE (column 2) indicates that MLE performed better than
moment estimate for small sizes n > 30. Though we have a different result in S;; JSD (case 3) in example
1, this result was however not significant X?;al = 4.693 < X%5,0.05,mb = 7.261. For large sample sizes, both
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the moment and the MLE approach performed better in different cases based on their deviant statistics, but
overall MLE perfomed twice better than moments approach based on the empirical evidence in this study. In
addition, column 4 and 5 presented the estimate of the Akaike information criteria, to justify the inclusion
of the fifth parameter 5. Column 4 explains the result of AIC when the new parameter is introduced 3 > 1,
while column 5 signifies the situation when the new parameter is removed 5 = 1. The AIC statistics however
justified the significance of the introduced new parameter in the accurate modeling of large samples. On the
other hand, unlike AIC, the Bayesian information criteria (BIC) demonstrated the superiority of 5-parameter
JSD on the 4-parameter JSD irrespective of the sample sizes.

4. Conclusion

This study introduces the 5th parameter into the JSD to influence its underlying behavioural pattern. Some
properties of JSD, dependent on the introduced parameter, were derived. These properties however sug-
gested that fixing the introduced parameter as we have in previous studies will lead to unreliable analysis.
The significance of the introduced 5th parameter is further justified using AIC and BIC. In addition, the
study applied the pivotal quantity approach to make the non-regular JSD pdf become regular. This eases the
estimation of its parameters via moments and least square approach over a standardized quantile scale. The
least square approach to estimating the location and scale parameter of the different JSD cases is a good
estimator, though not uniformly the most powerful, but it gives a minimum variance on likelihood. The re-
sults via the moments and least square approach was then maximized to obtain the parameter estimates with
the highest likelihood value. Though the two approach were effective for the different assumptions, the em-
pirical evidence via deviance statistics showed the dominance of MLE estimates over the moment estimate.
The parameter estimation procedure engaged in this study were proven, encouraging and aside that it is easy
to understand; it also has a standard error that tends to zero as sample sizes increase to infinity going by
the convergence of the maximization technique. Further research on some properties of JSD which includes
its kullback leibler information, its inverse distribution function as well as its confidence estimates can be
carried out for the purpose of establishing hypothesis testing for one sample and two sample JSD. The codes
to reproduce the results in this study is available in R for easy usage by practitioners.
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