BENIN JOURNAL OF
STATISTICS

ISSN 2682-5767

Vol. 4, pp. 75— 89 (2021)

Performance of Some Nonlinear Time Series Models on
Non-Stationary Data

I. Akeyede*
Department of Statistics Federal University of Lafia, PMB 146, Lafia, Nigeria

(Received: 10 November 2020; accepted: 12 March 2021)

Abstract. Time series analyses are based on assumptions of linearity and station-
arity, whereas many real life problems may not satisfy these assumptions. Thus,
there is a need for further investigation of nonlinear time series models for cases
that are non-stationary coupled with the features of nonlinearity. This study ex-
amines the Autoregressive (AR), Self Exiting Threshold Autoregressive (SETAR),
Smooth Transition Autoregressive (STAR) and Logistic Smooth Transition Au-
toregressive (LSTAR) models. Mont-Carlo simulations are conducted using the R
statistical package, to investigate the relative performances of these models at sam-
ple sizes of 50, 80, 100, 130, 150, 180, 200, 250, 300 and 400 based on the Mean
Square Error (MSE), the Residual Variance (RV), the Akaike Information Criteria
(AIC) and the Mean Absolute Percentage Error (MAPE). Thereafter, the models
were fitted to data on exchange rate and their performances were evaluated. The
study found that the LSTAR model outperformed others in all forms of the gen-
erated nonlinear autoregressive cases, except for the polynomial models (where
SETAR is preferred to the others).

Keywords: SETAR, STAR, LSTAR, stationarity, nonlinear autoregressive model.

Published by: Department of Statistics, University of Benin,
Nigeria

1. Introduction

Time series models are usually employed to fit and analyse the dynamic be-
haviour of time series data; for example, the linear models such as autoregres-
sive (AR) models, moving average (MA) models, and mixed autoregressive
moving average (ARMA) models (David, 2011). The incorporation of the lin-
ear time series models into several statistical and econometric packages makes
them more prominent than their nonlinear counterparts. Although these linear
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models are quite successful in many applications, they are unable to represent
many nonlinear dynamic patterns such as waves, jump, asymmetry, thresholds
and amplitude dependence. For instance, inflation rate and gross domestic prod-
uct (GDP) typically fluctuate around a higher level and are more persistent dur-
ing expansions, but they stay at a relatively lower level and are less persistent
during contractions (Hansen, 2000). For such data, it would not be reasonable
to expect a single, linear model to capture these distinct behaviours (Chung-
Ming, 2002). Indeed, in some situations, variations in the data do not exhibit
simple regularities and are difficult to analyse and predict accurately. Linear re-
currence and their combinations for describing the behaviour of such data are
often found to be inadequate. Nonlinear time series models have the advantage
of being able to capture asymmetries, jumps, and time irreversibility, which are
mostly observed in financial and economic time series (Akeyede et al., 2016).
They provide a much wider range of possible dynamics for the economic and
financial time series data than linear models.

Aslan et al. (2018) proposed Temporal clustering of time series via threshold
autoregressive models and applied it on application to commodity prices. The
proposed clustering approach is mainly based on feature vectors derived from
models estimates. The pricing of Bitcoin options with a view to incorporating
both conditional heteroscedasticity and regime switching in Bitcoin returns was
studied by Tak and Robert (2020). They adoped a nonlinear time series model
combining both the self-exciting threshold autoregressive (SETAR) model and
the generalized autoregressive conditional heteroscedastic (GARCH) model for
modeling Bitcoin return dynamics. Specifically, the SETAR model is used to
model regime switching and the Heston-Nandi GARCH model is adopted to
model conditional heteroscedasticity. Shankar et al (2019) examined the de-
terminants of mispricing in single stock futures traded in the National Stock
Exchange of India, the second largest global trading venue for such contracts.
Selahattin Giiri and Burak GLS detrending in nonlinear unit root test The Monte
Carlo simulations made indicate that the proposed test is more powerful than
the Kruse (2011) test. Using the proposed test, it was examined whether the
consumer price index permanent or transitory for 25 countries. According to
the results obtained, by using the Kruse test, we find that unit root hypothesis
was rejected only in 5 countries while using the GLS Kruse test, the unit root
hypothesis was rejected in 15 countries.

The motivation for this study is that many real world problems may not satisfy
the assumptions of linearity and/or stationarity. It is essential to investigate data
that are non-stationary and nonlinear. This can be done using nonlinear time
series models such as the SETAR, the STAR and the LSTAR models. These
nonlinear time series models are discussed in the subsequent subsections.
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1.1 Self-Exciting Threshold Autoregressive (SETAR) model

For the SETAR model, the threshold variable is a certain lagged value of the
process itself; hence the adjective; self-exciting. (More generally, the thresh-
old variable may be some vector covariate process or even some latent process,
but this extension will not be pursued here. The simplest class of TAR mod-
els is the Self Exciting Threshold Autoregressive (SETAR) models of order p
introduced by Tong(1983) and specified by equation (1). The popularity of SE-
TAR models 1s due to their being relatively simple to specify, estimate, and
interpret as compared to many other nonlinear time series models. A k-regime
SETAR(d; p1, p2, - - - , pr.) model has the form

Gp + 5y O Yiiet, if Yioa <m
Y(t)=qdp+ 2 o5V tef, ifri <Y g<r (1)
O+ 2 Y Y+, ifre1 < Yig

where £ is the number of regimes in the model, d is the delay parameter, and p;
is the autoregressive order in the ith regime of the model. The threshold param-
eters satisfy the constraint —oo = rg < 711 < -+ < 71y < 1 = oc. In this
model, the threshold variable is a lagged value of the process itself; hence the
adjective; self-exciting. The threshold variable may be some vector covariate
process or even some latent process, but this extension will not be pursued here.

The innovation within the ith regime ¢! is a sequence of identically in-
dependent normal random variables with zero mean and constant variance
0? < oo(i = 1,2,---k). The overall process Y;, is non-linear when there are
at least two regimes with different linear models. The common variance o2 can
be estimated by the sample pooled variance in the data. The superscripts in the
model (1) indicate states of the world or regimes. Within each regime, it is as-
sumed that the dynamical behaviour of the time series variable follows a linear
autoregressive process. The regime that is operative at any time t depends on
the observable past history of {Yt} itself, in particular, on the value of Y;_,.
Therefore, Tong and Lim (1980, p. 249) therefore calls the process in equation
(1) a self-exciting threshold autoregressive model.

The class of self-exciting threshold autoregressive (SETAR) model (Tong
1983, 1990) has been widely employed in the literature to explain various em-
pirical phenomena in an observed time series. See the work of Tong and Yeung
(1991) for beach water pollution, Yadav, Pope, and Paudyal (1994) for future
markets, Watier and Richardson (1995) for epidemiological applications, Lewis
and Ray (1997) for sea surface temperatures, Montgomery et al. (1998) for
U.S. unemployment, Fuecht et al. (1998) for medical studies, and Clements and
Smith (2001) for exchange rate variables. Tong (1990) lists many more exam-
ples from diverse fields. The statistical properties and forecasting performance
of SETAR models have been extensively examined (Tong, 1990; Hansen, 1996;

http://www.bjs-uniben.org/




Performance of some nonlinear time series models ... 78

1999; 2000; Clements and Smith, 1999; Kapetanios, 2000; De Gooijer and Ray,
2001). The model has certain features, such as limit cycles, amplitude depen-
dent frequencies, and jump phenomena that cannot be captured by a linear time
series model. Tong and Lim (1980) showed that the threshold model is capa-
ble of producing asymmetric, periodic behavior exhibited in the annual Wolf’s
sunspot and Canadian lynx data.

The Threshold Autoregressive model with two regimes is considered in this
study as an extension of the autoregressive models. This allows for the param-
eters changing in the model according to the value of an exogenous threshold
variable St-d If it is substituted by the past value of which means S;_; = Y;_4
then we call it Self-Exciting Threshold Autoregressive model (SETAR). Some
simple cases are considered in this study.

1.2 Smooth Transition AR (STAR) model

A criticism of the SETAR model is that its conditional mean equation is not
continuous (Tsay 2010). The thresholds (r;) are the discontinuity points of the
conditional mean function pt . In response to this criticism, smooth TAR models
have been proposed (Chan and Tong, 1986; Terasvirta, 1994). A time series Y;
follows a 2-regime STAR(p) model of the form

S

p p
Yi_g— A
Yi=co+ E ®0,iYt—q + F (—t ) c1 + g O1:Yi—i | +er (2)
j=1

j=1

where d is the delay parameter and s are parameters representing the location
and scale of model transition, and F'(.) is a smooth transition function. In prac-
tice, F'(.) often assumes one of three forms: logistic, exponential, or a cumula-
tive distribution function. The conditional mean of a STAR model is a weighted
linear combination between the following two equations:

p
pit=co+ Y ¢0iVi—q
=1

p
pat = co + Z(Co +c1) + (¢0,i + ¢1.4) Yi—g
=1

Yi_q—A

The weights are determined in a continuous manner by F[( .

)] The prior
two equations above also determine properties of a STAR model. For instance,

a prerequisite for the stationarity of a STAR model is that all zeros of both AR
polynomials are outside the unit circle. An advantage of the STAR model over
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the TAR model is that the conditional mean function is differentiable. However,
experience shows that the transition parameters ?and s of a STAR model are
hard to estimate. In particular, most empirical studies show that standard errors
of the estimates of ? and s are often quite large, resulting in t ratios of about 1.0
(Terasvirta, 1994; Tsay, 2010 and Avdoulas et al, 2018).

1.3 Logistic Smooth Transition AR (LSTAR) model

The logistic smooth transition autoregressive of order p [LSTAR(P)] model is:

Yi=F(v,¢;Yq) = (1 +exp—{y(Yig—d)}) " 3)

The coefficienty,~v > 0 is the smoothness parameter and the scalar c is the
location parameter and d is known as the delay parameter, the variable Yt —
d)(d > 0) is then called the transition variable.

This study is aimed at evaluating the performance of nonlinear time series
models in (1), (2) and (3) that can be fitted to the data generated from classes of
nonlinear second order autoregressive model. Their performances are evaluated
by simulations under violation of the stationarity assumption.

2. Materials and Method

The data were generated through simulation in R statistical software using the
procedure carried out by Akeyede et al (2016) and Faycal et al (2019), the pa-
rameters of the linear and nonlinear autoregressive functions in models 1-4 are
fixed a1 = 0.5,a2 = 0.6 as to ensure the condition for non-stationarity in the
data generated. The sample sizes simulated from each of autoregressive cases
are; 50, 80, 100,130, 150, 180, 200, 250, 300 and 400. At a particular choice
of sample size, the simulation study was carried out 1000 times for different
forms of the autoregressive functions. Thereafter, a number of steps ahead were
simulated to sample sizes of 50, 150 and 300 only, representing small, moderate
and large sample sizes, respectively, to predict h-steps ahead (where h = 5, 10,
. .., 50) from the data generated from different classes of linear and nonlinear
autoregressive time series stated earlier. Each model from (1) to (3) was fitted
to the different sizes of the simulated data from (4) to (7) and this was used to
forecast the future values. The effect of the sample size on the performance and
the predictive ability of the linear and nonlinear models under study were de-
termined. The relative performance of the models were examined using, Mean
Square Error (MSE) and Akaike Information Criteria (AIC). The model with
lowest criteria is the best among the models for the simulated data.
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2.1 Models selected for simulation

Data are generated from several linear and nonlinear second orders of general
classes of autoregressive functions given as follows. These are time series mod-
els and they are considered to investigate the performance of the model study on
different forms of nonlinear time series data (linear, Trigonometry, exponential
and polynomial)

Model 1. AR(2) : Yy = 0.3Yj;_1 — 0.6Yji_o + e, 4)

with the source code to simulate data of sample size 50 given as z < —e <

—rnorm(50)
for (tin 3 : 50)x[t] < —0.3 x z[t — 1] — 0.6 * x[t — 2] + €[t]

Model 2. TR(2) : Yy = 0.5sin(Ysi—1) + 0.6cos(Yyi—2) + ey, (5)

with the source code to simulate data of sample size 50 given as z < —e <
—rnorm(50)
for (t in 3 : 50)x[t] < —0.5 * sin(x[t — 1]) 4+ 0.6 x cos(x[t — 2]) + w]t]

Model 3: EX(2) : Y;; = 0.5Y3_9 + exp(+0.6Ys_2) + e, (6)

with z < —e < —rnorm/(50)
for (tin 3 : 50)x[t] < —0.5 * z[t — 1] + exp(+0.6 * z[t — 2]) + elt]

Model 4: PL(2) : Y;; = 0.5Y,7 | +0.6Y; 2 + e, (7)

t=1,2,---,50,80,100, 130, 150, 180, 200, 250, 300 and 400.i = 1,2, - - , 1000.

where, Y}; are present responses simulated from random samples of normal dis-
tribution and Y;;—1 and Y};;_o are past responses of first and second order re-
spectively. e;; 1s a random error which is known as white noise which is also
distributed from normal distributions as follows: Y;; ~ N(2000,20) and e ~
N (1000, 10) for non-stationary data structures. The model 4, 5, 6 are trigonom-
etry, exponential and polynomial autoregressive functions respectively with co-
efficients of Y;_1 being 0.5 and Y;_2 being +0.6. Results on the effect of sample
size and the stationarity of the models are examined in the next section.

2.2 Forecast performance comparison using Theil’s U statistic

The predictive ability of the four models were examined using MSE and AIC
criteria and forecast comparison were carried using Theil’s U statistic. Theil’s
U statistic is a relative accuracy measure that compares the forecasted results
with the results of forecasting with minimal historical data. It also squares the
deviations to give more weight to large errors and to exaggerate errors, which
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can help eliminate methods with large errors. U > 1 indicate that he forecasting
technique is better than guessing, U = 1 indicates that he forecasting technique
1s as good as guessing and U < 1 indicates that he forecasting technique is
worse than guessing

o 2
Zn—l Yiii—Yin
=1\ " v,

U= 5
Zn—l Y Y
=1\ " v

3. Results and Discussion

In this section, the performance of the time series models (AR, SETAR, STAR
and LSTAR) are examined under non-stationarity assumptions and then fitted.
The mean square error and the residual variance of each model at various sample
sizes are recorded in Tables 3-5, while that of AIC and MAPE are recorded in
Tables 3-6.

Table 1: Performances of the fitted models on the basis of MSE and RV cri-
teria for model 2 under violation of stationarity assumption: TR(2) : Y} =
0.5sin(Yzi—1) + 0.6cos(Yyi—2) + €4

Sample MSE RV
Size(n) AR SETAR STAR LSTAR AR SETAR STAR LSTAR
50 [ 20898 102.19 125.05 99.65 | 202.34  117.03 125.05 101.66
80 [ 197.90 9724  14.17 97.01 | 199.10  109.12 T114.13 97.37
100 | 175.95 96.29 108.57 95.82 | 175.12 99.44  108.67 95.83
130 [ 161.78 9551 106.48 93.59 | 153.65 96.63  106.54 93.6
150 | 138.26 94.19 104.23 91.95 | 138.07 95.85 104.25 91.96
180 | 121.03 93.72  103.39 91.67 | 121.42 94.07 103.44 91.67
200 | 109.57 92.37 102.83 91.20 | TT1.74 94.01 102.84 91.21
250 | 103.65 91.27 102.54 91.00 | 105.36 93.36  102.52 89.62
300 [ 102.73 90.61 101.16 89.62 | 105.80 92.95 101.23 84.33
400 [ 102.02 88.52  98.07 84.32 1 102.44 90.61  98.08 80.07

From Table 1, it can be seen that the best model is LSTAR at various sample
sizes, but the SETAR model competes well with LSTAR when the sample size
increases. The performances of the four fitted models increased with increase in
sample size. From Table 2, the AIC values show that the best model is LSTAR
at various sample sizes followed by the SETAR model. The three nonlinear
models are equally good based on MAPE criterion and perform relatively better
when the sample size decreases.

From Table 3, it can be seen that the SETAR and the LSTAR models fit the
exponential function very well than the other two models between sample sizes
50 and 250. The LSTAR model performs better when the sample size is 300
and above. The AR model is worse at all levels. The performance of the four
models increase when sample the size increases.

From table 4 it can be seen that the SETAR model fits the exponential func-
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Table 2: Performance of the fitted models on the basis of AIC and MAPE cri-
teria for model 2 under violation of stationarity assumption: TR(2) : Y3 =
0.5sin(Yzi—1) + 0.6cos(Yyi—2) + €

Sample AIC MAPE
Size(n) AR SETAR STAR LSTAR AR SETAR STAR [LSTAR
50 [ 6391.49 2033.27 2033.72 1936.12 | 17.6258 0.0092 0.0097  0.0089

80 [ 6255.74 1843.86 1880.96 1847.41 | 14.0640 0.0079 0.0089  0.0079
100 | 5059.64 1383.17 139592 1377.70 | 13.9491 0.0078 0.0084  0.0077
130 | 4263.29 1152.78 1160.19 1139.89 | 12.5065 0.0078 0.0083  0.0076
150 [ 3456.85 922.04 923.14  920.27 | 12.2648 0.0078 0.0083  0.0076
180 | 3130.92 830.25 84093  828.36 | 11.3035 0.0077 0.0082 0.0076
200 | 2637.79  691.87 706.19  681.21 | 11.0280 0.0077 0.0081 0.0074
250 [ 2305.74  599.69  607.94 609.13 | 10.3361 0.0077 0.0081 0.0074
300 | 1801.72 461.22  470.66  467.82 | 10.7869 0.0076 0.0081 0.0071
400 [ 1460.82 37452 38496  366.56 | 9.5906 0.0075 0.0079 0.0070

Table 3: Performances of the fitted models on the basis of MSE and RV criteria
for model 3 under violation of stationarity assumption: EX(2):Y;; = 0.5Y;;_0 +
exp(+0.6Y;_2) + e

Sample MSE RV
Size(n) AR SETAR STAR [LSTAR AR SETAR STAR [LSTAR
50 [ 331.75 107.29 11478 102.43 | 230.07 110.02 119.79 103.44
80 | 288.90 97.08 T113.72 97.35 | 226.15 96.34 113.74 97.36
100 | 267.34 96.10 108.32 96.13 | 223.59 94.65 108.37 96.14
130 | 249.43 95.33 105.71 95.75 ] 215.29 93.99 105.71 95.75
150 | 205.00 94.09 104.03 93.40 | 200.94 92.04 104.29 93.41
180 | 186.75 93.54 102.83 92.22 | 183.30 92.03  102.82 92.22
200 [ 180.20 92.25 102.38 90.89 | 180.03 90.63 102.45 90.89
250 [ 173.22 91.18 101.74 89.54 | 160.26 88.31 101.73 89.55
300 [ 162.74 88.45 100.67 89.13 | 158.31 86.27 100.62 80.13
400 [ 141.91 85.89  97.53 71.78 | 140.10 85.58 97,51 T1.78

Table 4: Performances of the fitted models on the basis of AIC and MAPE
criteria for model 3 under violation of stationarity assumption: EX(2):Yy; =
0.5Y%i—2 + exp(+0.6Y%—2) + e

Sample AIC MAPE
Size(n) AR SETAR STAR LSTAR AR SETAR STAR LSTAR
50 | 7002.68 2030.17 2033.58 2036.60 | 23.5937  0.0058 0.0083  0.0059
80 | 6326.19 1843.20 1880.07 1847.36 | 15.3888 0.0054 0.0061  0.0056
100 | 4833.21 1370.77 1394.63 1377.09 | 12.5204 0.0054 0.0058  0.0055
130 | 4074.78 112232 1158.81 1138.53 | 9.7816 0.0054 0.0058 0.0055
150 | 3306.28 901.85 92198 917.94 | 8.3678 0.0054 0.0057  0.0053
180 | 2995.53 80991 83997 825.06 | 7.0466 0.0053 0.0057 0.0053
200 | 2525.15  691.67  705.11  700.26 | 6.4899 0.0053 0.0057 0.0053
250 | 2208.26  599.55  606.92  609.55 | 5.1483 0.0053 0.0056 0.0053
300 | 1727.01  461.13 47047  426.42 | 4.3578 0.0052 0.0056  0.0052
400 | 1401.28  369.08 384.71 347.89 | 3.2149 0.0051 0.0054 0.0051

tion better than the other models for the sample sizes considered, followed by
the LSTAR model based on the AIC criterion. But their performance is not sig-
nificantly different judging by the MAPE criterion.

From Table 5, the SETAR model gives the best fit at the different sample
sizes followed by the LSTAR as shown by the MSE and the residual variance
values. The STAR and AR models performed poorly compared to the SETAR
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Table 5: Performance of the fitted models on the basis of MSE and RV criteria
for model 4 under violation of stationarity assumption: PL(2) : Y; = 0.5Y | +
0.6Y;_o + e

Sample MSE RV
Size(n) AR SETAR STAR LSTAR AR  SETAR STAR LSTAR
50 | 8353.43 587.33 6757.12  608.99 | 6745.37 395.0563 5755.987  409.23
80 | 7393.56 477.34 6043.36  593.13 | 5485.34 337.4387 5643.068 393.10
100 | 6837.19 398.01 5934.70 590.88 | 5203.12 320.3332 5593.099  390.80
130 | 6381.20 387.48 5849.25 566.86 | 5067.56  304.987 5584.023  366.79
150 | 6321.07 218.89 5696.23 365.33 | 5017.78 299.4432 4569.077  335.20
180 | 5916.31 197.45 5472.05 349.18 | 4814.17  282.897 4472.003  309.04
200 | 5156.09 193.79 4835.30 192.11 | 4160.15  270.007  4196.76  172.10
250 | 5314.74  190.09 4248.68 132.01 | 4115.34 190.0007  3835.09  122.00
300 | 5003.34 190.01 4197.30 108.00 | 3487.23 189.3435 3244.877 107.99
400 | 5001.97 189.88 4192.13 101.85 | 2937.17 179.6745 3190.078  101.80

and LSTAR models.

Table 6: Performances of the fitted models on the basis of AIC and MAPLE
criteria for model 4 under violation of stationarity assumption: PL(2) : Y; =
0.5Y,2; + 0.6Y;_2 + ¢

Sample AIC MAPE
Size(n) AR SETAR STAR LSTAR AR SETAR STAR LSTAR
50 | 13840.79  980.67 9995.28 2397.56 | 18.0715 0.0008 10.017  0.0009
80 | 11050.46  943.79 9875.59 2358.24 | 17.6511 0.0008 9.1632  0.0009
100 | 8288.85 898.01 7386.54 1787.50 | 17.2596 0.0008 8.7866  0.0008
130 | 6908.31 552.99 6187.38 1508.10 | 16.7551  0.0008 8.7016  0.0008
150 | 5527.61 521.88 4964.43 1210.83 | 16.5065 0.0008 8.6115 0.0008
180 | 497494 396.45 4474.47 998.80 | 16.1365 0.0007 8.5015  0.0007
200 | 4146.26  389.99 3727.01  586.82 | 16.0938 0.0007 8.4335 0.0007
250 | 3593.67 382.00 3225.54 360.91 | 15.9967 0.0007 8.2214  0.0006
300 | 2765.58 367.89 2453.25 353.62 | 15.6539 0.0007 8.1825 0.0006
400 | 2213.05 367.87 1962.73  320.41 | 15.3027 0.0007 8.1074  0.0006

In Table 6, the SETAR model gives the best fit at the different sample sizes
followed by LSTAR on the basis of AIC and MAPLE criteria. The STAR and
AR model have the lowest AIC and MAPE values.

4. Predictive Ability of Fitted Models for Non-stationary Data Structure

Tables 7-9 show the comparison among the predictive ability of the four fitted
models to model 5, 6 and 7 ( trigonometric, exponential and polynomial func-
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tions) when the sample size of 300 is used in the simulation and the stationarity
assumptions are violated. The values of the mean square error and the AIC of
the forecast values of each model at various horizons (H), i.e., the number of
steps ahead and sample sizes are recorded in the tables. The MSE and AIC cri-
teria are selected so as to be consistent with the criteria used in fitting the data.
The model with lowest criteria has the best forecast at every horizon.

Table 7: Forecast performances of the fitted models on the basis of MSE and

AIC for model TR(2): Yti = 0.5sin(Yy—1) + 0.6cos(Yy—9) + et

Step Ahead MSE AIC

(H AR~ SETAR STAR  LSTAR AR SETAR STAR  LSTAR
5 0.0079  9.45E-05 1.78E-04 9.73E-05 | -122.103 -910.441  -655.87 -613.101
10 0.0065 7.89E-05 8.01E-04 8.71E-05 | -215.187 -1060.56  -712.08 -701.044
15 0.0056 6.34E-05 8.91E-04 7.70E-05 | -301.561 -1331.97  -940.08 -933.397
20 0.0043  3.90E-05 7.10E-04 T1.00E-05 | -613.990 -1615.41 -1260.15 -1447.53
25 0.0031 3.32E-05 5.86E-04 T1.15E-06 | -766.231 -2007.56 -1581.60 -2061.73
30 | 8.72E-04 3.01E-05 4.98E-04 8.95E-06 | -912.561 -2213.71 -1904.16 -2288.61
35 [ 7.12E-04 2.91E-05 4.32E-04 9.65E-06 | -987.002 -2576.55 -2227.49 -2407.09
40 | 4.32E-04 2.11E-05 3.81E-04 4.772E-07 | -991.671 -2610.75 -2551.69 -2716.63
45 [ 4.10E-04 1.71E-05 3.41E-04 1.21E-07 | -1031.77 -2710.91 -2876.51 -2970.89
50 | 3.82E-04 1.91E-05 3.09E-04 2.86E-07 | -1078.89 -2910.91 -3001.86 -3524.65

The best forecast was observed from SETAR when number of steps ahead is
less than 25 followed by LSTAR model but LSTAR model forecasts better than
others when the number of steps ahead increased.

Table 8: Forecast performances of the fitted models on the basis of MSE and
AIC for model EX(2): Y;; = 0.5Y};_9 + exp(0.6Y3;_2) + et

Step Ahead MSE AIC
(H) AR SETAR STAR  LSTAR AR SETAR STAR  LSTAR
5 10.0067 4.67E-06 5.62E-04 8.05E-06 | -271.89  -782.82  -690.71  -872.39

10 [ 0.0042 3.56E-06 3.35E-04 6.56E-06 | -402.35 -989.77 -812.23 -1034.53

15 1 0.0040 1.07E-06 2.77E-04 4.95E-06 | -582.36 -1271.63 -941.43 -1320.42

20 |1 0.0037 8.77E-07 1.06E-04 3.75E-06 | -631.41 -1572.35 -1284.38 -1651.61

25 [ 0.0035 6.13E-07 8.85E-05 1.03E-06 | -725.18 -2125.72 -1632.40 -2223.73

30 | 0.0031 3.51E-07 7.42E-05 7.71E-07 | -742.48 -2461.80 -1843.23 -2653.17

35 10.0028 3.11E-07 5.50E-05 5.90E-07 | -867.86 -2782.02 -2312.56 -2603.89

40 [ 0.0026 1.66E-07 2.77E-05 2.99E-07 | -989.48 -2796.54 -2671.58 -2731.37

45 10.0022 1.23E-07 1.99E-05 1.87E-07 | -1100.00 -2831.42 -2762.82 -2872.38

50 [ 0.0017 1.04E-07 1.63E-05 1.32E-07 | -1156.39 -289291 -2813.77 -2894.27

It was observed that the LSTAR models have the best forecast followed by
SETAR based on the two criteria. But both models have close performances
when the numbers of steps ahead increase.

The three nonlinear models have close forecast performances based on MSE
and in Figure 12, the SETAR models have the best forecast at number of steps
greater than 30 based on AIC while SETAR and LSTAR have equal perfor-
mances at the number of steps that are less than 30.
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Table 9: Forecast performance of the fitted models on the basis of MSE and AIC
for model 4 PL(2): Y; = 0.5Yt — 12 + 0.6Y;_2 + ¢

Step Ahead MSE AIC

(H) AR SETAR STAR  LSTAR AR SETAR STAR  LSTAR
5 10.0057 7.83E-07 8.78E-05 8.08E-08 | -385.63 -1378.29 -908.60 -1362.52
10 [ 0.0042 5.57E-07 3.76E-05 7.34E-08 | -497.39 -1712.27 -980.79 -1756.22
15 [ 0.0035 4.05E-07 1.13E-05 5.43E-08 | -322.42 -1883.23 -1003.59 -1897.76
20 [ 0.0034 2.55E-07 9.16E-06 4.08E-O8 | -591.01 -1879.34 -1130.45 -1902.18
25 1 0.0031 9.18E-08 8.87E-06 2.44E-08 | -772.18 -1909.58 -1222.72 -1923.45
30 [ 0.0027 8.02E-08 8.89E-06 2.57E-08 | -890.38 -1997.69 -1412.74 -1987.41
35 10.0025 6.42E-08 7.78E-06 1.99E-08 | -967.72 -2203.48 -1567.33 -1998.74
40 1 0.0021 5.19E-08 6.42E-06 1.41E-08 | -996.56 -2511.49 -1890.86 -2143.53
45 10.0021 3.12E-08 5.81E-06 1.20E-08 | -1100.19 -2751.56 -2773.76 -2432.39
50 [ 0.0020 3.00E-08 5.34E-06 1.01E-08 | -1290.55 -2856.58 -2897.48 -2678.91

5. Application of the Fitted Models to Real Life Data (Exchange Rate)

For the purpose of the flow of the analysis, the time series data on monthly
exchange rate from government for the periods of twenty are shown in Figure.
Before the data were fitted to different models, tests of linearity and stationarity
were carried out using Keenan and Tsay F-tests for linearity and Augmented
Dickey-Fuller (ADF) and Philip Peron (PP) tests for stationarity.

Exchange Rates
150 200 250 300
1 1 1 1

100
L

years

Figure 1: Nigeria’s exchange rate (official)
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Table 10: Test of nonlinearity and non-stationarity on monthly exchange rate

Stationarity Test| Test of Nonlinearity Test of Unit root
Keenan Test Tsay F-Test ADF PP

p-value
Test-Stat 1.4837 1.787 -1.1283 4.1779
DF 24 24 24 24
P-value 0.2239 0.09424 0.9162 0.01
Decision|Accept Nonlinearity Accept Nonlinearity Accept Unit Root|Accept Unit Root
Remarks Nonlinear Nonlinear  Not Stationary| Not Stationary

Table 11: Performance of the fitted models on exchange rate data

Model MSE AIC MAPLE RV
AR 6022.00 5546.21 0.9756 2.6507
SETAR 5873.27 4179.52 0.8833 2.4009
STAR 5998.32 4181.63 0.8687 2.3017
LSTAR 5873.29 4181.52 0.8634 2.3002

Table 12: Forecast performance of the models using Theil U statistic

Steps Ahead AR | SETAR STAR | LSTAR
5 | 1.33013 | 2.84114 | 2.57219 | 3.1075
10 [ 1.30324 | 2.81424 | 2.54529 | 3.09641
151027634 | 2.78735 | 2.5184 | 3.0435
20 [ 0.24944 | 2.76045 | 1.4915 | 3.0286
25 | 0.22255 | 2.73356 | 1.46461 | 3.0026
30 [ 0.19565 | 2.70666 | 1.43771 [ 2.9785
35 1 0.16876 | 2.67977 | 1.41082 | 2.94872
40 [ 0.14186 | 2.65287 | 1.38392 | 2.92182
45 1 0.11497 | 2.62598 | 1.35703 | 2.89493
50 [ 0.08807 | 2.59908 | 1.33013 [ 2.86803

Table 10 shows that the null hypothesis of nonlinearity was accepted for the
exchange data using the two statistics. Also, the null hypothesis of unit root was
accepted in favour of alternative of stationarity in both ADF and PP tests for the
real data and therefore the data is nonlinear and non-stationary.

Table 11 shows that LSTAR performs better than others based on the two
criteria. The 12-Months Forecast plots of the Exchange rate using the four fitted
models are presented in Figures 2

Based on the Theil’s analysis above, the LSTAR has the highest forecasting
power due to their values greater than 1 and also greater than other values of the
models across the steps ahead; this is followed by SETAR and STAR. However
the Theil values of AR, at higher steps ahead are close to zero, hence it is not
as good as other models in forecasting. Indeed, the forecasting ability of all the
models decrease as steps ahead increase.
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Figure 2: 12-months forecasts plots of the monthly exchange rate

6. Conclusion

The performance of LSTAR model superseded other models in nonlinear non-
stationary autoregressive functions as the sample size increases except in poly-
nomial function where SETAR model performs better than others. The three
nonlinear models SETAR, LSTAR and STAR have close performances in expo-
nential autoregressive function when sample size increases and performances
of the four fitted models increase in all forms of autoregressive functions. The
SETAR models had the best fit to linear autoregressive, exponential and polyno-
mial functions at sample sizes that were less than 250 while LSTAR performed
relatively better at 250 and above for non-stationary data structures. Further-
more, The LSTAR model outperformed others in forecasting as number of steps
ahead increases. The predictive ability of all fitted models increase as sample
sizes and numbers of steps ahead increase. Finally, it was observed that LSTAR
model fits best to the data on official exchange rate (Naira to Dollar).
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