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Abstract. Cox Proportional hazards model has played a great role in epidemiological and clinical researches in exam-
ining the influence of covariates on hazard distributions when no specification of the baseline hazard is made. It is a
robust model irrespective of the nature of baseline hazard distribution. However, it is less popular when it is of primary
interest to estimate the hazard function. The purpose of this study is to fit and compare piecewise exponential and Cox
models using renal failure data. For the piecewise exponential model, the hospital admission duration of the patients
was split into various non-overlapping time intervals such that the hazard rates were assumed to be constant within each
interval but not necessarily constant across the entire time duration. The results were compared with the standard Cox
proportional hazards model. It was found under both models that age of the patients, diagnosis (categorized as chronic
or acute), and blood pressure (systolic and diastolic) significantly influenced mortality from renal failure among the
patients under study. However, based on AIC, piecewise exponential model showed superiority over Cox proportional
hazards model and improved as the length of the intervals increased.
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1. Introduction

Renal disease, also known as Kidney disease is a common disease worldwide and is associated with high
rates of morbidity and mortality (Goldberg and Krause, 2016). A number of studies have been carried out
on kidney disease in the literature. Goldberg and Krause (2016) discussed several aspects of the relationship
between gender and kidney disease, and it was shown that gender had an important influence on several
aspects of the disease. Neugarten et al. (2000) performed a meta-analysis using studies that met defined
criteria to evaluate the effect of gender on the progression of non-diabetic chronic renal disease. The results
indicated that men with chronic renal disease of various etiologies showed a more rapid decline in renal
function with time than do women.

Khalil et al. (2018) applied logistic regression analysis to examine factors associated with increased mor-
tality of patients with acute kidney disease. Only a few studies have been carried out on kidney disease using
survival analysis approach. The current study therefore aims to apply Cox proportional hazards and Piece-
wise exponential models to data on renal failures among patients and examines the factors that influence its
mortality.

The popular Cox proportional hazards model proposed by Cox (1972) is a semiparametric survival model
and it has intensive applications in the fields of social, medical, behavioral and public health sciences
(Pourhoseingholi et al., 2007; Samawi et al., 2020). It is so widely used by researchers because of its few
assumptions (Pourhoseingholi et al., 2007). The model is based on assumption that the hazards be constant
across the entire time line. Some of the recent Cox related studies include: Zucker et al. (2018) developed
a new method for covariate error correction in the Cox survival regression model, and the method was ap-
plied to data from the Health Professionals Follow-Up Study (HPFS) on the effect of diet on incidence of
diabetes. Amico et al. (2019) applied the single-index/Cox mixture cure model to breast cancer data set
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using maximum likelihood method of estimation. It was found that the model compared favourably with the
model that assumed the mixing probabilities in a logistic model framework. Yang et al. (2020) proposed
G-estimation and artificial censoring for estimating the model parameters in the presence of time-dependent
confounding and administrative censoring. By using the semiparametric efficiency theory, they derived the
first semiparametric doubly robust estimators, which are consistent when the model for the treatment process
or the failure time model, but not necessarily both, is correctly specified. However, the appropriateness of
the Cox proportional hazards model is limited if proportionality assumption is not met. Another drawback
of Cox model is its difficulty in computing the hazard rate across the interval.

Piece-wise exponential model (PEM), according to (Breslow, 1974), is an extension of the exponential
proportional hazards model used in modelling time-to-event data. It appears to be more flexible than the
popular standard Cox model in matters of hypothesis testing. Another advantage of PEM over Cox model is
that, it is possible to compute the hazard rate within each interval. Given series of time intervals, the base-
line hazards are known to be constant within each interval, but not necessarily constant across the different
intervals defined by the change-points (Allison, 2010). The model has been widely used for the analysis of
time-to-event data in different contexts, including reliability engineering (Kim and Proschan, 1991; Gamer-
man, 1994), clinical situations such as heart transplant data (Aitkin ez al., 1983), hospital mortality rate data
(Clark and Ryan, 2002), economics (Bastos and Gamerman, 2006) and cancer studies including leukemia
(Breslow, 1974). Piecewise exponential model with random time grid was proposed by Demarqui, et al.
(2012). The study considered a class of correlated Gamma prior distributions for the failure rates.

The model has been recognized as a simple and flexible tool in survival analysis. For example, Berry et
al. (2004) built a piecewise baseline hazard function in their Bayesian model, allowing the hazard rate to
vary in each of the follow-up years. Hoos et al. (2010) emphasized that piecewise exponential models are
valuable in cancer immunotherapy trials. Edwards and Bartlett (2005) identified a sudden reduction in the
mortality rates for prostate cancer, which implied that a model with piecewise constant hazard assumption
would be particularly useful for interpreting cancer survival and facilitate treatments and diagnoses.

Goodman et al. (2011) proposed the detection of multiple change-points in piecewise constant hazard
function using a Wald-type test based on maximum likelihood estimates (MLE) and a forward selection se-
quential testing procedure. The method allowed them to estimate not only the number of change points in
the hazard function but where those changes occurred. They then tested for change points in prostate cancer
mortality rates using the NCI surveillance, epidemiology, and end results dataset. The major challenge in
using the piecewise exponential model is to identify significant change-points in the failure rate over time.
A number of articles have been published on detecting the change-points with piecewise constant expo-
nential models. Demarqui et al. (2008) introduced a full Bayesian approach for the piecewise exponential
model in which the grid of time-points (and, consequently, the endpoints and the number of intervals) is
random. They estimated the failure rates using the proposed procedure and compare the results with the non-
parametric piecewise exponential estimates. Cai et al. (2017) proposed an alternative approach based the
linear approximation to study the change-point problem in the piecewise linear failure rate function. They
proposed the test statistic based on the modified information criterion and the consistency as well as the
asymptotic null distribution of the test were established. For other articles published in this direction, see
Nguyen et al. (1984), Hawkins (2001), Dupuy(2009), Qian and Zhang (2014).

2. Material and methods

2.1 The survival and hazard functions

Suppose that T" is a continuous random variable representing the length of time until the occurrence of
failure event and we define the cumulative distribution function F'(¢) as the probability that an individual
experiences the event before or at time ¢, expressed as F'(t) = Pr(T < t), then the survival function denoted
S(t), is the probability that an individual survives longer than ¢ and is expressed as S(t) = Pr(T > t), where
S(t)=1—F(t).

The hazard function describes the conditional probability that failure event occurs to an individual in the
interval (¢,t 4 dt), given survival up to time t and it is expressed as

a(t) = lim Pr
dt—0

T dt\T
{tS < t+dt\ Zt} 0

dt
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2.2 Cox proportional hazard model

Suppose that «;(t, Z;) is the hazard function of the time-to-failure T given the covariate Z;, then the Cox
(1972) proportional hazards model is given as.

ai(t, Zi) = a(t) exp(Z;y) )

where «(t) is an arbitrary baseline hazard which is independent of the covariates, but depends on time ¢
and y is a vector of parameters. If proportional hazards assumption is true, then for any Z(.) and Zy(.), the
hazard ratio can be written as

a(t) exp(Z;7)

HR = .
a(t) eXp(ZiQV)

=k 3)

The expression in (3) implies that the hazard ratio of two individuals with covariate vectors Z(.) and Zy(.)
is constant over the entire duration with constant term k. (Kleinbaum and Klein, 2012)

2.3 Parameter estimation of Cox model

Cox model utilizes partial likelihood method in which estimates for the parameter of interest v can be
found by maximizing the partial likelihood L(7y). Suppose that the censoring indicator for individual i,
1=1,2,3,...,n with observed time ¢; and covariate vector Z;, is defined by

g 1, ifthe " individual dies at time ¢; ,
L 0, if the individual is censored at time t;

then the partial likelihood can be given (Cox, 1972; 1975)

L(’Y)Iﬂ[ exp(Zi) ) @)
i=1 ZseRi eXp(Zs )

2.4 Piecewise exponential model (PEM)

The basic idea underlying the PEM is to divide the duration time into q non-overlapping intervals, ¢y < t1 <
.-+ < tg and define the k£ — th interval as [t;_1, t1), extending from the (k — 1) — th boundary to the k — th
and including the former but not the latter. Let ¢;;, denote the time lived by the ¢ — th individual in the k — th
interval, that is, between 7 _1 and 7. If the individual lived beyond the end of the interval, so that t; > 75 ,
then the time lived in the interval equals the width of the interval and ¢;;, = 73, — 7,_1. If the individual died
or was censored in the interval, i.e. if 7,_1 < t; < T, then the time lived in the interval is t;;, = t; — Tp_1,
which is the difference between the total time lived and the lower boundary of the interval. We only consider
intervals actually visited, but obviously the time lived in an interval would be zero if the individual had died
before the start of the interval and ¢; < 7;_1. The baseline hazard is then assumed to be constant within each
interval, where the baseline hazard within the k" interval can be written as

a(t)=oag, te[mp_1,k) (5)

Consequently, hazard rates within each interval (Goodman et al., 2011)will be expressed as follows:

a;, 0<t<m
ag, T1 <1< T

(6)

a(t;op, 11, m2) =
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Since the hazard is assumed to be piece-wise constant, the corresponding survival function is also piece-wise
exponential (Friedman, 1978), and this is given as

exp(—ait), 0<t<mn
S(t; ag, 71, 72) = { exp(—oq — aa(t — 7)), T <t < (7)
exp(—a1m — ot — 1) —ag(t — 1)), t>m

The hazards can be obtained simultaneously along with the estimates of the regression parameters which
express the effects of the covariates on the hazards. If we consider fitting the proportional hazards model of
the usual form given in (2), then under relatively mild assumption that the baseline hazard ag(t) = ay is
piece-wise constant, the proportional hazards model in the context of (5) and (6), given the covariates Z; can
be given as

ik = ay exp(Z;7) (8)

where oy, is the hazard corresponding to individual ¢ in interval k, ay, is the baseline hazard for interval k,
and exp(ZZf'y) is the hazard ratio for an individual with covariate vector Z; in the interval.

2.5 Parameter estimation of piecewise exponential model

A discussion on the likelihood function is presented in Friedman (1982). Maximum likelihood estimates of
the underlying hazards rates under the piecewise exponential model can be obtained simultaneously with the
parameter estimates. After some simple calculation, Holford (1980), Laird and Oliver (1981) noted that the
piecewise exponential model was equivalent to a certain Poisson regression model.

Suppose that the censoring indicator is defined as d;;, = 1 if subject i is observed to fail in interval k and
d;;, = 0 if the subject is censored. Suppose we define

1, ift; € [tp_1,tr), dip =1,
Yik = ’ [ ). di )
0, otherwise
and
t; — tk, ty <t
Wik = § te — o1, Tt <t <y, (10)
0, ti <tp—1

where ;1. is a Poisson response variable and ,u; i = log p;1; is an offset term, then the likelihood construc-
tion for subject ¢ in the interval £ of PEM model is proportional to Poisson likelihood with response y;; with
predictor 7;;, = Z,~ and offset term /..

2.6 Model comparison

A common criterion for model comparison is the Akaike Information Criterion (AIC) (Akaike, 1974), which
is expressed as

AIC = —2In L(%) + 2p (11)

where L(¥) is the likelihood of the estimated model, p denotes the number of estimated parameters and 7 is
the number of observations. A model with smaller AIC value is the preferred model for the data.
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3. Results

As an illustration, we applied the proposed methods to renal failure data. The data were collected from
the Renal Care Centre, University of Ilorin Teaching Hospital. Survival time was the length of time (in
days ) stayed in the hospital before death. The covariates collected included the sex of the patients, age
on admission, occupation, diagnosis of the disease and blood pressure (systolic and diastolic). Kaplan-Meier
estimates of survival probabilities were computed and the associated curves were plotted for the dichotomous
or dichotomized covariates. Also the log-rank test of equality of survival probabilities S;(t) = Sa2(t) were
carried out. For the study, the following dichotomous covariates were defined. sex: 1 for male and 2 for
female (reference), age: 1 for less than 40 years (reference) and 2 for 40 years or older, diagnosis: 1 for
chronic renal failure and 2 for acute renal failure (reference), occupation: 1 for government/business and 2
for others (reference), systolic BP: 1 for greater than 120 and 2 for 120 or less (reference) and for diastolic
BP: 1 for greater than 80 and 2 for 80 or less (reference). The minimum survival time was 1 day and the
maximum was 103 days. The results of log-rank test at 5 per cent level of significance are summarized in
Table 1. As observed from the table, the difference between the survival probabilities of male and female
patients was not significant.

Table 1: Results of log-rank test of equality of survival probabilities at 5 per cent level of significance

Covariates | Chi-square | p-value
Sex 0.16 0.3856
Age 3.02 0.0001**

Diagnosis 7.71 0.0055 **
Occupation 2.62 0.0158 **
Systolic 0.1 0.8000
Diastolic 0.7 0.4000

However the Kaplan-Meier curve in Figure 1 (a) revealed that male patients had a slightly higher probabil-
ity of survival than their female counterparts, with median survival times of 20 days and 18 days respectively.
The results of the log-rank test also revealed that there was a significant difference between the survival ex-
periences of patients aged less than 40 years and those 40 years or older (p < 0.0001), and as observed in
Figure 1(b), patients less than 40 years of age had higher survival probability than those aged 40 years or
older, with median survival times of 19 years and 14 days respectively. Also, patients diagnosed with chronic
renal failure had significantly higher survival experience, with median survival time of 22 days compared to
their counterparts who were diagnosed with acute renal failure, having median survival time of 13 days. The
median survival times for patients who were government workers was 25 days, with a significantly higher
survival experience than those in other occupations, having median survival time of 17 days. The median
survival times for patient with systolic BP of 120 or less and those with BP greater than 120 were the same
(19 days). However the survival probability was slightly higher in favour of patients with BP 120 or less.
The survival probabilities of patients had similar pattern for diastolic BP, with median survival time of 20
days for patients with diastolic BP less or equal to 80 and 16 days for patients having diastolic BP greater
than 80.

3.1 Cox proportional hazards model

The results of Cox proportional hazards models were presented in Table 2, showing the estimated coeffi-
cients, standard errors and the p-values. As observed, age, diagnosis, systolic and diastolic blood pressures
were significant predictors of hazards of renal failure mortality at 5 percent level of significance. Increased
age of the patients increased the hazards, patients age 40 years or more were 16 percent more likely to die
from renal failure compared to those less than 40 years of age. Female patients were 15 percent less likely
to die from renal failure relative to the male patients. Patients above normal systolic and diastolic blood
pressures had higher risk of mortality due to kidney failure than those within the normal range.
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Figure 1: Kaplan Meier-curves: (a) sex (b) age (c) diagnosis (d) occupation (e) systolic (f) diastolic.

3.2 Piecewise exponential model

The whole follow-up period was broken up into 15 intervals of length 7 days each and the hazard was
assumed to be constant within each interval. A new dataset was created with multiple records for each
person. The time variable was defined as the length of time from the start of the interval until death. The
7-day interval piece-wise exponential model was then fitted to the data. As observed, the model included 22
parameters: 1 intercept and 21 in the linear predictor (15 hazard parameters for the baseline hazard function
and 6 for the regression coefficients).

The estimated hazard rate for the i*" person in the kth interval from the PEM with 7-day intervals was
calculated from equation (8), where k1, ko, ..., k15 are indicators for the intervals. For example, when k;,
is equal to 1 and ko, ..., k15 are set to 0, we could obtain the hazard rate estimate for the second interval
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Table 2: Cox-proportional hazard model for renal failure patients

Covariate | Coefficient Beta | Hazard Ratio | Std. Error | p-value
Age
< 40 years 0 1.000
> 40 years 0.145 1.156 0.306 0.0480
Sex
Female 0 1.000
Male -0.168 0.845 0.245 0.8190
Occupation
Others 0 1.000
Government 0.044 1.045 0.082 0.5888
Diagnosis
Acute 0 1.000
Chronic 0.826 2.284 0.257 0.0013**
Systolic BP
<120 0 1.000
> 120 0.101 1.106 0.006 0.0040%*
Diastolic BP
<80 0 1.000
> 80 0.115 1.122 0.011 0.0120%*

(7 — 14 day), which is the seventh day to the fourteenth day. The complete results of PEM are shown in
Table 3.

As observed, the factor effects of diagnosis, systolic and diastolic blood pressures were significant at
5 percent similar to Cox model. The hazard ratio of diagnosis is exp(0.8717) = 2.391 (p — value <
0.0001), indicating that the risk of dying by patients diagnosed with chronic renal failure was about 2.4 times
higher compared to those diagnosed with acute renal failure. Also, both systolic and diastolic blood pressures
increased the risk of death from renal failure with relative risks of exp(0.712) = 2.0380 (p — value =
0.0008) and exp(0.110) = 1.1162 (p — value = 0.0002) respectively.

The 15-interval piecewise exponential hazard rate can generally be expressed as

A(t) = exp(—5.260 + 0.1104; + 0.141j5 + 0.00855 — 1.58974 — 1.48875 — 1.353j¢
— 1.1307 — 15.890js — 15.890j + 0.351510 — 0.334711 — 0.195712 — 15.823713
— 15.823514 — 1.084715) x exp(0.006age — 0.024sex + 0.047occupation
+ 0.872diagnosis + 0.007BPU + 0.001BPL) (12)

In computing the hazard rate within each interval, using the formula in (12) above, the hazard rate for
a 42-year-old, male govt-employed/self- employed with diastolic blood pressure of 80 and systolic blood
pressure of 120, diagnosed of chronic renal failure in the first time interval (0 — 7¢" day) and tenth time
interval (70 — 77" day) are computed as follows.

3.2.1 First time interval (0 — Tt day)

A1 = exp(—5.260 + 0.11071) x exp(0.006age — 0.024sex + 0.047occupation
+ 0.872diagnosis + 0.007BPU — 0.001BPL)
= exp(—5.260 4+ 0.110 % 1) x exp(0.006 * 42 — 0.024 x 1 + 0.047 x 1 + 0.872 % 1
+0.007 % 120 + 0.001 * 80) = 0.046 (13)

http://www.srg-uniben.org/



The use of Cox and piecewise exponential models ... 98

Table 3: Piece-wise exponential model for renal failure data with 7-day interval

Covariate | Estimate | Std. Error | z value p-value
(Intercept) -5.260 0.986 -5.33 | < 0.0001%**

71 0.110 0.291 0.381 0.7028

J2 0.141 0.334 0.420 0.6741

J3 0.008 0.422 0.020 0.9840

J4 -1.589 1.018 -1.562 0.1184

Js5 -1.488 1.019 -1.461 0.1439

Je -1.353 1.018 -1.329 0.1839

J7 -1.130 1.021 -1.107 0.2670

Js -15.890 1.019 -0.016 0.9875

J9 -15.890 1.019 -0.016 0.9875

J10 0.351 0.610 0.575 0.5651

J11 -0.334 1.023 -0.327 0.7439

J12 -0.195 1.024 -0.191 0.8483

J13 -15.823 1.551 -0.010 0.9918

Jia -15.823 1.551 -0.010 0.9918

J1s -1.084 0.762 -1.422 0.1550

Age 0.006 0.007 0.701 0.4835

Sex -0.024 0.246 -0.096 0.9238

Occupation 0.047 0.083 0.564 0.5724
Diagnosis 0.872 0.258 3.369 | <0.0001 **

Systolic BP 0.007 0.006 2.657 0.0008 **
Diastolic BP 0.001 0.011 -0.094 | 0.0002 **

3.2.2  Tenth time interval (70 — 77" day)

A10 = exp(—5.260 + 0.351519) x exp(0.006age — 0.024sex + 0.047occupation
+ 0.872diagnosis + 0.007BPU — 0.001BPL)
= exp(—5.260 + 0.110 * 42) x exp(0.006 * 42 — 0.024 * 1 + 0.047 « 1 + 0.872 % 1
+ 0.007 % 120 + 0.001 * 80) = 0.058 (14)

3.3 Sensitivity analysis and model comparison

The PEM was re-estimated with the division of the timeline into intervals of 3, 5 and 10 days. Table 4 shows
the values of AIC for PEM at different time intervals as well as for the Cox model. As observed, irrespective
of the time interval, PEM outperformed Cox model in terms of AIC. It is also observed that PEM improved
as the length of time interval increased. In other words, for the data under study, the model gives a better fit
when the interval is smaller. Thus the piecewise exponential model is preferred over Cox in modeling the
survival rate of renal patients.

Table 4: Table comparing AIC values of the models

Model AIC
PEM
3-week interval | 658.63
5-week interval 588
7-week interval 572
10-week interval | 500.48
COX Model 644.23
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4. Conclusion

Piecewise exponential and Cox proportional hazards models were applied to data on renal failure patients.
For the piecewise exponential model, the entire time line was divided into series of non-overlapping intervals.
The choice of the cut-points in the piecewise exponential models allowed one to reasonably approximate the
baseline hazards at each interval, using closely-spaced boundaries where the hazard varied rapidly and wider
intervals where the hazard changed more slowly. Among the factors selected for the analysis, the two ap-
proaches found that patients’ age, diagnosis and blood pressure (systolic and diastolic) were significantly
associated with death from renal failure. Results from AIC indicated that Piecewise exponential model was
better in predicting the death from the renal failure data as compared to Cox model. The adequacy of the
model was found to be better as the length of interval increases. The current study demonstrated that piece-
wise exponential model offered the flexibility of modeling changes in the hazard of renal failure with ease in
interpretation. It is particularly useful in the context in which the baseline hazard is of primary interest, which
Cox proportional hazards model could not achieve. While Cox model demonstrated that the death from renal
failure across the entire time line matters, it did not provide a simple characterization of the change in hazard.
This limitation is addressed by the use of Piecewise exponential model.
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