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Abstract. Homoscedastic property of a variance of the errors in a linear regression is among the assump-
tions of the Ordinary Least Square (OLS) method. When this assumption of homoscedasticity is violated,
it causes the regression coefficients to be biased and inconsistent. Various methods have been used in the
literature to detect the presence of heteroscedasticity. This study compares two of the existing methods of
detecting the presence of heteroscedasticity. The two methods are; Goldfeld-Quandt (GQ) and Breusch-
Pagan-Gofrey (BP) test. Results show that the GQ test is better than the BPG test in terms of their
P-values. In the presence of heteroscedasticity, the study adopts the method of Weighted Least Squares
(WLS) to circumvent the problems of associated with heteroscedasticity.
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1. Introduction

Regression Analysis are widely used in different aspects of life (Usman, 2015). Classical linear re-
gression model assumes that the error term ei in the regression model is homoscedastic ( i.e. equal
variance) across the observations. However, if assumption of homoscedasticity, or equal variances,
is not satisfied, we then have the problem of heteroscedasticity (unequal variance). Among the con-
sequences of heteroscedasticity are that, the OLS estimates are unbiased and consistent, they may
no longer have efficient or minimum variance, and they seized to be best linear unbiased estimators
(BLUE). However, in the presence of heteroscedasticity the BLUE estimators are provided by the
method of weighted least squares. Due to the presence of heteroscedasticity, the t and F test under
standard assumptions may not be reliable.

Various methods were proposed in the literature to detect the presence of heteroscedasticity.
Among the formals tests are: white test (White, 1980), Breusch-Pagan (Breusch and Pagan, 1979),
Park test (Park, 1969), Glejser test (Glejser, 1969), Spearman

′
s rank correlation test, Goldfeld-

Quandt Test. (Goldfeld and Quandt, 1980) and Koenker-Bassett (KB) test.
Researchers have continued to excellently investigate and compared different tests of heteroscedas-

ticity. According to (Long and Ervin, 1998) white test has low power for small sample:- This was
shown by exploring the small sample properties of four versions of HCCM (Heteroscedasticity-
Consistent Covariance Matrix) in a linear regression model are HC0, HC1, HC2, and HC3. Among
them the HC3 was the least powerful, followed by HC2 and HC1. However, the differences were
greatly reduced after adjustment of power for size distortion. A comparison between Szroeter

′
s

asymptotic test and Goldfeld-Quandt (GQ) test. (Goldfeld and Quandt, 1980), Breusch-Pagan test
(Breusch and Pagan, 1979) and BAMSET (Ramsey, 1969) was conducted by Griffiths and Surekha
(1985). Goldfeld-Quandt test being the most popular and performed satisfactorily. Breusch-Pagan
(BPG) test is also popular and powerful. The BAMSET is less sensitive. Griffiths and Surekha:
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(1985) examined the tests for both large and small samples among the four tests. Feng; (1981) stud-
ied Bayesian and frequentist approach for heteroscedasticity. Among the frequentist approach, BPG
test, white test and Koenker-Basset test (Koenker and Bassett, 1982) were compared. The study
found that the white test has the weakness of identifying the variance that creates the problem
of heteroscedasticity. Koenker test fails to detect the problem when sample sizes are small due to
a large degree of freedom. Yüce; (2008) introduces a diagnostic that do not rely on the assump-
tion of heteroscedasticity and does require estimation of an auxiliary regression model. The test is
asymptotic on ordinary least square. Midi; (2008) proposed a modified GQ test for the detection
of heteroscedasticity when there are outliers. Using two different sets of data, the conventional test
such as white test, BPG test and GQ test failed to detect the heteroscedasticity in the presence of
outliers unlike the modified GQ test.

This paper uses a data set on forestry, fishing, livestock and crop production. The data were
sourced from National Bureau of Statistics (NBS); it covers the period from 1981-2010.

The paper compares two conventional tests that are widely used by econometricians namely:
Breusch-Pagan (Breusch and Pagan, 1979) and Goldfeld-Quandt test. (Goldfeld and Quandt, 1980).

1.1 Screening of heteroscedasticity graphically

Graphical method is an informal method of detecting the presence of heteroscedasticity. The residuals
are usually plotted against the fitted variables or any of the explanatory variables. The distribu-
tion/spreads of the residuals to a non-systematic patterns indicates the presence of heteroscedasticity
(Chatterjee, 2006).

Figure 1.: Error variance distribution

Figure 1 illustrates some graphs of the residuals against independent variable or fitted values. Fig.
1 (a) shows a homoscedastic residual structure. Fig. 1(b) and Fig. 1(c) shows outward-opening and
inward-opening funnel patterns respectively, which are the indicators of heteroscedasticity structure
Fig. 1(d) depicts the elliptic shape heteroscedasticity structure. Fig. 1(e) shows the irregular type
of heteroscedasticity. In this case, variances of some disturbances are different from others.

2. Materials and methods

2.1 Hypothesis

H0:The error variance is homoscedastic
versus
H1:The error variance is not homoscedastic
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2.2 Formal tests

2.2.1 Breusch Pagan test

To illustrate this test, consider the k-variable linear regression model

Yi = β1 + β2X2i + ......+ βkXki + µi (1)

Assume that the error variance σ2I described as

σ2I = f(∝1 + ∝2 Z2i + ......+ ∝m Zmi) (2)

That is, σ2I is some function of the non-stochastic variables Z
′
s (it is assumed that predictor

variable is stochastic in nature and regressor variables are non-stochastic in nature); some or all of
the X

′
s can serve as Z

′
s. Specifically, assume that

σ2I = f(∝1 + ∝2 Z2i + ......+ ∝m Zmi) (3)

that is, σ2I is a linear function of the Z
′
s. If ∝2=∝3= .... =∝m= 0, σ2I =∝1, then the variance

is a constant. Therefore, to test whether σ2I is homoscedastic, one can test the hypothesis that
α2 = α3 = ..... = αm = 0. This is the basic idea behind the Breusch - Pagan test. The actual test
procedure is as follows (Gujarati, 2004).

Step 1. Estimate (1) by OLS and obtain the residuals µ̂1, µ̂2, ....., µ̂n.
Step 2. Obtain σ̂2 =

∑
µ̂2i /n. But this ML estimator of σ2

Step 3. Construct variables pi defined as

pi = µ̂2i /σ
2

Step 4. Regress pi on the Z
′
s as

pi =∝1 + ∝2 Z2i + ......+ ∝m Zmi + VI (4)

where VI is the residual term of the regression.
Step 5. Obtain the ESS (explained sum of squares) from (4) and define

T = SSE/2

Assumingµi are normally distributed, one can show that if there is homoscedasticity and if the
sample size, n, is large, then

T ∼ χ2
m−1 (5)

Therefore, if in an application the computed T exceeds the critical χ2 value at the chosen level of
significance, one can reject the hypothesis of homoscedasticity; otherwise one does not reject it.

2.2.2 Goldfeld-Quandt test

This popular test is applicable when one assumes that the heteroscedastic variance, σ2I is positively
related to one of the explanatory variables in the regression model. For simplicity, consider the usual
two-variable model:
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Yi = β1 + β2X2i + ......+ βkXki + µi (6)

Suppose σ2I is positively related to Xi as

σ2I = σ2X2
i (7)

where σ2 is a constant.
Assumption (7) postulates that σ2I is proportional to the square of the X variable. If (7) is appro-

priate, it would mean σ2I would be larger, the larger the values of Xi. If that turns out to be the
case, heteroscedasticity is most likely to be present in the model. To test this explicitly, Goldfeld
and Quandt suggest the following steps (Gujarati, 2004):

Step 1. Order or rank the observations according to the values of Xi, beginning with the lowest X
value.

Step 2. Omit c central observations, where c is specified a priori, and divide the remaining (n - c)
observations into two groups each of (n - c)/2 observations.

Step 3. Fit separate OLS regressions to the first (n - c)/2 observations and the last (n - c)/2 observa-
tions, and obtain the respective residual sums of squares RSS1and RSS2, RSS1 representing
the RSS from the regression corresponding to the smaller Xi values (the small variance
group) and RSS2 that from the larger Xi values (the large variance group). These RSS each
have (Gujarati, 2004)

n− c
2
−K or

(
n− c− 2k

2

)
df

where k is the number of parameters to be estimated, including the intercept.
Step 4. Compute the ratio

λ =
RSS1/df

RSS2/df
(8)

If µi are assumed to be normally distributed (which we usually do), and if the assumption of ho-
moscedasticity is valid, then it can be shown that λ of (8) follows the F distribution with numerator
and denominator df each of (n-c-2k)/2.
If in an application the computed λ(= F ) is greater than the critical F at the chosen level of signif-
icance, we can reject the hypothesis of homoscedasticity, that is, we can say that heteroscedasticity
is very likely.

2.3 Remedial measure

2.3.1 Weighted least square

Heteroscedastic errors can be corrected by either transforming the predictor variable (Weisberg,
1980) or by either transforming both sides. Also, the WLS method is presented here as a way of
dealing with heteroscedastic errors. Recall the linear regression equation

E(Y ) = β0 + β1X1 + β2X2 + ......+ βkXk (9)
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We have estimated the parameters β0, β1, ......, βk by minimizing the sum of squared residuals

SSE =

n∑
i=1

(yi − ŷi)2

=

n∑
i=1

(yi − (β̂0 + β̂1Xi,1 + β̂2Xi,2 + ......+ β̂kXi,k))2

Sometimes we want to give some observations more weight than others. We achieve this by mini-
mizing a weighted sum of squares:

WSSE =

n∑
i=1

wi(yi − ŷi)2

WSSE =

n∑
i=1

wi(yi − (β̂0 + β̂1Xi,1 + β̂2Xi,2 + ......+ β̂kXi,k))2

The resulting β
′
s are called weighted least squares (WLS) estimates, and the WLS residuals are

(Chatterjee, 2006)

√
wi(yi − ŷi)

Conducting OLS on the transformed variables is equivalent to WLS method.

2.3.2 Why use weights?

Suppose that the variance is not constant:

V ar(yi) = σ2i

Then we use weights

wi ∝=
1

σ2i

The WLS estimates have smaller standard errors than the ordinary least squares (OLS) estimates.
That is, the OLS estimates are inefficient, relative to the WLS estimates. When you specify weights,
regression software calculates standard errors on the assumption that they are proportional to 1/σ2i .
However, like the OLS method, the WLS regression is also sensitive to the presence of outliers. one
weakness of the WLS method is that, the weights determination is much affected by the presence of
outliers. The Parameter estimation is also affected and other aspects of WLS, if care is not taken.

Kutner et al (2004) proposed an estimator that can be applied to multiple regressors to deals with
unequal variance, but the estimator is opposed by an outlier (Huber, 1981), the weight function
curtails the effect of an outlier.

A two-step robust weighted least square was proposed by Midi (2016). The estimator take care both
heteroscedasticity and outliers at the same time with a multiple regressor variables. The estimator
combines estimator proposed by Kutner and Huber.

3. Results and discussions

We now present the data (see Appendix) on our variables i.e. GDP, Crop Production, Forestry,
livestock and Fishery. The graph in figure 2 is showing a heteroscedastic graph
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Figure 2.: Standardized residual vs. fitted value plot using MINITAB software we now proceed to
conduct the respective tests on the dataset.

3.1 Breusch-Pagan Test

Since BPG test is sensitive to normality assumption, one needs to test its normality. Figure 3 is
showing how the data was approximately distributed normally

Figure 3.: Histogram for the dataset

Table 1.: Heteroskedasticity Test: Breusch-Pagan-Godfrey.

F-statistic 2.868191 Prob. F(4,22) 0.0472
Obs ∗R− squared 9.254229 Prob. Chi-Square(4) 0.0550
Scaled explained SS 12.63128 Prob. Chi-Square(4) 0.0132

R-squared 0.342749 Mean dependent var 1.43E+12
Adjusted R-squared 0.223249 S.D. dependent var 2.95E+12

S.E. of regression 2.60E+12 Akaike info criterion 60.17755
Sum squared resid 1.49E+26 Schwarz criterion 60.41752

Log likelihood -807.3969 Hannan-Quinn criter. 60.24890
F-statistic 2.868191 Durbin-Watson stat 1.428035

Prob(F-statistic) 0.047161

Remark: the BPG test in Table 1 above shows a p-value of 0.047 indicating a significant variable
at 5 percent level of significance. thus, showing the absence of homoscedasticity. The AIC and SIC
of 60.18 and 60.41 respectively, also indicate a significant value.

3.2 Goldfeld-Quandt test

For n1 = 12, n2 = 12, the three middle observations were omitted, according to GQ procedure
P- value = 0.0030, λ = 387.39

Remark: P-value of 0.003 is indicating the absence of homoscedasticity.
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Table 2.: Comparative analysis

Tests P - Value
Goldfeld - Quandt 0.0030

Breusch Pagan 0.0472

3.2.1 Comparative analysis

Remark: the results in the table 2 above shows the p-value of BPG and GQ test. GQ test has a
lower p-value of 0.003 than that of BPG that is having p-value of 0.0472. GQ test having the lowest
p-value considered more significant than BPG test.

3.2.2 Remedy

The WLS method was applied as a remedial measure for a small sample size. After running WLS
method we again test the model for equal variance using BPG test

Table 3.: Weighted Statistics

R-squared 0.988163 Mean dependent var 813600.1
Adjusted R-squared 0.986011 S.D. dependent var 74428.40

S.E. of regression 80468.68 Akaike info criterion 25.59470
Sum squared resid 1.42E+11 Schwarz criterion 25.83467

Log likelihood -340.5284 Hannan-Quinn criter. 25.66606
F-statistic 459.1362 Durbin-Watson stat 0.524243

Prob(F-statistic) 0.000000 Weighted mean dep. 274563.0

The estimate is highly significant with a p-value of 0.0000. This shows that heteroscedasticity has
been dealt with.

Table 4.: Heteroskedasticity Test: Breusch-Pagan-Godfrey.

F-statistic 1.697418 Prob. F(4,22) 0.1865
Obs ∗R− squared 6.367602 Prob. Chi-Square(4) 0.1733
Scaled explained SS 3.750843 Prob. Chi-Square(4) 0.4408

R-squared 0.235837 Mean dependent var 5.28E+09
Adjusted R-squared 0.096898 S.D. dependent var 7.16E+09

S.E. of regression 6.81E+09 Akaike info criterion 48.28567
Sum squared resid 1.02E+21 Schwarz criterion 48.52564

Log likelihood -646.8566 Hannan-Quinn criter. 48.35703
F-statistic 1.697418 Durbin-Watson stat 1.301574

Prob(F-statistic) 0.186487

Remark: Table 4 is showing a BPG test for the corrected data with a p-value of 0.18165. The
AIC and SIC of 48.29 and 48.53 respectively, also indicate a significant value. This confirm that the
model is now free from heteroscedasticity.

4. Conclusions

In this paper, an empirical study was conducted base on two methods of detecting the presence of
heteroscedasticity using small sample size. The study conducted BPG and GQ test on the dataset,
both methods detected an unequal variance of errors. We compare the two methods base on their
p-value and discover that GQ test performs better. The unequal variance of errors was removed
by the WLS method. The equality of variance was tested after the applying WLS. It is therefore
recommended that, when a sample size is small, GQ test is more preferable. However, comparison
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of GQ and BP test when sample size are large in the presence of outlier and high leverage point was
reserved for future research.
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Table 1.: Appendix.

Year Growth GDP Crop Production Livestock Forestry Fishing
1984 4.53 170377.78 21497.55 6619.81 1379.84 867.99
1985 12.85 192273.27 25066.49 7162.61 1467.5 540.48
1986 5.29 202436.23 25972.39 7389.41 1571.76 769.07
1987 23.22 249439.08 39658.65 8373.79 1589.73 664.76
1988 28.42 320328.54 61848.89 88889.89 1859.97 1166
1989 30.86 419196.39 71883.92 11790.99 2172.69 2414.52
1990 19.2 499676.85 86926.2 14145.87 2346.08 3208.54
1991 19.29 596044.69 101645.81 15576.05 2436.64 3577.15
1992 52.64 909803.31 153379.79 23027.48 2991.28 4717.10
1993 38.39 1259070.46 249195.93 36575.99 3966.44 5586.23
1994 40.01 1762812.82 377308.29 54304.41 5982.25 7677.95
1995 64.24 2895201.36 670177.59 97202.29 8253.69 14508.06
1996 30.53 3779133.07 906894.16 130407.84 10368.68 22844.05
1997 8.80 4111640.63 1026291.49 145029.53 12554.40 27586.54
1998 11.61 4588989.84 1133389.05 158314.25 15881.38 33456.21
1999 15.65 5307361.52 1204704.92 164374.29 19305.58 38589.02
2000 29.96 6897482.48 1270628.76 172190.34 24493.95 41095.74
2001 17.93 8134141.81 1699686.63 228557.88 29980.41 57196.61
2002 39.32 11332252.82 3875457.92 271026.11 36228.67 68807.96
2003 17.38 13301558.86 4161565.55 299224.96 44126.96 81008.74
2004 30.22 17321295.24 4419062.97 360802.97 56394.33 99004.04
2005 28.57 2 2269977.83 5372203.92 463420.03 67450.37 129258.10
2006 28.70 28662468.77 6723216.46 560246.06 80196.05 149639.23
2007 15.12 32995384.35 7654220.16 642276.42 91496.01 163988.81
2008 18.68 39157884.39 90396334.01 758839.77 108101.13 193750.28
2009 13.09 44285560.50 10419603.30 863402.42 121254.66 221181.95
2010 23.32 54612264.18 11683896.37 979564.05 135720.90 249711.48
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