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Abstract. In a recent study, Osatohanmwen et al. (2019) developed the T - Kumaraswamy family of
distributions which is a family of distributions with members having support on the unit interval. Five
examples of such distributions were defined including the so-called ’normal - Kumaraswamy’ distribution.
A new method for generating probability distributions using the normal - Kumaraswamy distribution
as the generator is presented in this paper. Some normal - Kumaraswamy generated distributions are
presented alongside some general structural properties of the new generator. The new generator is in the
same class as the beta-generated class and the Kumaraswamy-generated class which are well studied in
the literature and it can compete favorably in modeling disparate data sets with these well-known and
well-studied classes of distributions.
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1. Introduction

Methods for generating new continuous univariate probability distributions have continued to re-
main an active area of research in probability distribution theory within the last four decades.
Azzalini (1985) introduced a system for generating new distributions by adding a skewing param-
eter to a symmetric distribution. Mudholkar and Srivastava (1993) defined the exponentiated class
of distributions by exponentiating a given baseline distribution with a positive parameter. Eugene
et al. (2002) defined the beta-generated class of distributions by using the beta distribution as the
generator. Jones (2009) and Cordeiro and de Castro (2011) proposed the Kumaraswamy-generated
class of distributions by using the Kumaraswamy distribution as the generator. More recently, Alza-
atreh et al. (2014) defined the T–R {Y } family of distributions as an extension of the beta and
Kumaraswamy generated classes in other to include generators defined in some other interval other
than the unit interval. Using the T–R {Y } approach, Osatohanmwen et al. (2019) defined a new
generalized family of distributions on the unit interval called the T – Kumaraswamy family of
distributions. General properties of the generalized family were studied by the authors and five
new members of the family were defined namely: the Weibull – Kumaraswamy {exponential}, log
logistic – Kumaraswamy{exponential}, logistic – Kumaraswamy {extreme value}, exponential –Ku-
maraswamy {log logistic} and the normal – Kumaraswamy {logistic} distributions. The normal –
Kumaraswamy {logistic} distribution was observed upon application to real data sets to be the most
flexible among the five members, and also out-performed the beta and Kumaraswamy distributions
in applications. The cumulative distribution function (cdf) and probability density function (pdf)
of the normal – Kumaraswamy {logistic} distribution were given respectively by

FX (x) = Φ
[
log
(

(1− xα)−β − 1
)]
, (1)
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fX (x) =
αβ (1− xα)−β−1 xα−1

(1− xα)−β − 1
φ
[
log
(

(1− xα)−β − 1
)]
, (2)

φ (.) = Φ
′
(.) , 0 < x < 1, α, β > 0,

where Φ is the cdf of the normal distribution.
In this paper, we define a new family of distributions generated by the normal – Kumaraswamy
{logistic} distribution called the normal – Kumaraswamy – G family of distributions. The new family
is defined in section 2 and some special members of the family are contained in section 3. General
statistical properties of the new family are presented in section 4 and the maximum likelihood
method of estimation of the parameters of the family is presented in section 5. Section 6 contains
application and discussion of results and the paper concludes in section 7 with conclusion.

2. The Normal – Kumaraswamy – G family of distributions

Suppose G (x; Θ) is a valid cdf with parameter vector Θ a random variable X is said to follow the
normal – Kumaraswamy – G (NKUM-G) family of distributions if it has the cdf

F (x;α, β,Θ) =αβ

∫ G(x;Θ)

0

(1− tα)−β−1 tα−1

(1− tα)−β − 1
φ
(

log
(

(1− t)−β − 1
))

dt

= Φ
(

log
(

(1−Gα (x; Θ))−β − 1
)) (3)

φ (.) = Φ
′
(.) , x ∈ R,Θ ∈ R, α, β > 0.

The corresponding pdf of the NKUM - G family is given by

f (x;α, β,Θ) =
αβg (x; Θ)Gα−1 (x; Θ) (1−Gα (x; Θ))−β−1

(1−Gα (x; Θ))−β − 1
×

φ
(

log
(

(1−Gα (x; Θ))−β − 1
)) (4)

φ (.) = Φ
′
(.) , g (x; Θ) = G

′
(x; Θ) , x ∈ R, Θ ∈ R, α, β > 0.

The corresponding hazard function of the NKUM - G family is given by

h (x;α, β,Θ) =
αβg (x; Θ)Gα−1 (x; Θ) (1−Gα (x; Θ))−β−1(

(1−Gα (x; Θ))−β − 1
)(

1− Φ
(

log
(

(1−Gα (x; Θ))−β − 1
)))×

φ
(

log
(

(1−Gα (x; Θ))−β − 1
)) (5)

φ (.) = Φ
′
(.) , g (x; Θ) = G

′
(x; Θ) , xεR, ΘεR, α, β > 0.

3. Some members of the Normal – Kumaraswamy – G family of distributions

Here we present three members of the NKUM – G family namely: NKUM – Weibull, NKUM –
normal and NKUM – Gumbel distributions. These new distributions are readily obtained by taking
G (x; Θ) to be the cdf of the Weibull, normal and Gumbel distributions respectively.
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3.1 The Normal – Kumaraswamy – Weibull (NKUM – Weibull) distribution

Suppose G (x; Θ) is the Weibull distribution with cdf G (x; c, k) = 1 − e−(x/c)k , c, k > 0, the cdf of
the NKUM – Weibull distribution is given by

F (x;α, β, c, k) = Φ

(
log

((
1−

(
1− e−(x/c)k

)α)−β
− 1

))
(6)

x > 0, α, β, c, k > 0.

The corresponding pdf and hazard function of the NKUM – Weibull distribution are given respec-
tively by

f (x;α, β, c, k) =
αβ(x/c)k−1e−(x/c)k

(
1− e−(x/c)k

)α−1 (
1−

(
1− e−(x/c)k

)α)−β−1

c
(
1−

(
1− e−(x/c)k

)α)−β − c ×

φ

(
log

((
1−

(
1− e−(x/c)k

)α)−β
− 1

)) (7)

x > 0, α, β, c, k > 0,

h (x;α, β, c, k) =
αβ(x/c)k−1e−(x/c)k

(
1− e−(x/c)k

)α−1 (
1−

(
1− e−(x/c)k

)α)−β−1(
c
(
1−

(
1− e−(x/c)k

)α)−β − c)(1− Φ
(

log
((

1−
(
1− e−(x/c)k

)α)−β − 1
)))×

φ

(
log

((
1−

(
1− e−(x/c)k

)α)−β
− 1

))
(8)

x > 0, α, β, c, k > 0,

The density and the hazard plots of the NKUM – Weibull are shown in Figures 1 and 2 respectively.

Figure 1: NKUM - Weibull density
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Figure 2: NKUM - Weibull hazard

Figure 1 shows that the NKUM – Weibull density can be right-skewed, left-skewed and al-
most symmetric. The hazard function of the distribution can be observed to be increasing from
Figure 2.

3.2 The Normal - Kumaraswamy - normal (NKUM - normal) distribution

Taking G (x; Θ) to be the normal distribution with cdf Φ (z), the cdf of the NKUM – normal
distribution is expressed as

F (z;α, β) = Φ
(

log
(

(1− Φα (z))−β − 1
))

, (9)

z = (x− k)/c,−∞ < x, k <∞, α, β, c > 0.

The pdf and the hazard function of the NKUM – normal distribution are given respectively by

f (z;α, β) =
αβφ (z) Φα−1 (z) (1− Φα (z))−β−1

c (1− Φα (z))−β − c
φ
(

log
(

(1− Φα (z))−β − 1
))

, (10)

φ (.) = Φ
′
(.) , z = (x− k)/c, −∞ < x, k <∞, α, β, c > 0,

h (z;α, β) =
αβφ (z) Φα−1 (z) (1− Φα (z))−β−1(

c (1− Φα (z))−β − c
)(

1− Φ
(

log
(

(1− Φα (z))−β − 1
)))×

φ
(

log
(

(1− Φα (z))−β − 1
))

,

(11)

φ (.) = Φ
′
(.) , z = (x− k)/c,−∞ < x, k <∞, α, β, c > 0.

The shapes of the density and hazard of the NKUM – normal distribution for k = 0, c = 1 are
shown in Figures 3 and 4 respectively.
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Figure 3: NKUM - normal density

Figure 4: NKUM - normal hazard

Figure 3 shows that the graph of the NKUM – normal density can be skewed to the right
and left thus adding skewness to the conventional symmetry of the normal distribution. The hazard
of the distribution as shown in Figure 4 clearly shows that the distribution has an increasing hazard
function.
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3.3 The Normal – Kumaraswamy (NKUM – Gumbel) distribution

If G (x; Θ) is the Gumbel distribution with cdf G (x; c, k) = e−e
−(x−k)/c

, c > 0,−∞ < k, x < ∞, the
cdf of the NKUM - Gumbel distribution is given by

F (x;α, β, c, k) = Φ

(
log

((
1−

(
e−e

−(x−k)/c
)α)−β

− 1

))
, (12)

−∞ < x, k <∞, α, β, c > 0.

The density and hazard functions of the NKUM – Gumbel distribution are given respectively by

f (x;α, β, c, k) =
αβe−(x−k)/c

(
e−e

−(x−k)/c
)α (

1−
(

e−e
−(x−k)/c

)α)−β−1

c
(
1−

(
e−e−(x−k)/c

)α)−β − c ×

φ

(
log

((
1−

(
e−e

−(x−k)/c
)α)−β

− 1

))
,

(13)

−∞ < x, k <∞, α, β, c > 0,

h (x;α, β, c, k) =
αβe−(x−k)/c

(
e−e

−(x−k)/c
)α (

1−
(

e−e
−(x−k)/c

)α)−β−1(
c
(
1−

(
e−e−(x−k)/c

)α)−β − c)(1− Φ
(

log
((

1−
(
e−e−(x−k)/c

)α)−β − 1
)))×

φ

(
log

((
1−

(
e−e

−(x−k)/c
)α)−β

− 1

))
, (14)

−∞ < x, k <∞, α, β, c > 0.

The density and the hazard of the NKUM – Gumbel are shown in Figures 5 and 6 respectively.

Figure 5: NKUM - Gumbel density
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Figure 5 reveals that the NKUM – Gumbel density can be skewed to the right, left and also
symmetric. The hazard function of the distribution as shown in Figure 6 shows increasing property.

Figure 6: NKUM - Gumbel hazard

4. General properties of the Normal – Kumaraswamy – G family of distributions

Here some general properties of the NKUM – G family are presented. These properties include the
quantiles, moments and order statistics. We begin by finding a useful expansion for the cdf and pdf
of the NKUM – G family.

4.1 A useful expansion for the family

Using the following results in Gradshteyn and Ryzhik (2000):

log (x) = 2

∞∑
k=1

1

2k − 1

(
x− 1

x+ 1

)2k−1

, x > 0,

erf (x) =
2

π

∞∑
n=0

(−1)m x2n+1

(2n+ 1)n!
, π = 3.141593, xεR,

and the fact that

Φ (x) =
1

2
+

1

2
erf

(
x√
2

)
,

As well as the results of the generalized binomial theorem, the cdf of the NKUM – G family can be
represented by

F (x;α, β,Θ) =
1

2
+

1

π

∞∑
n=0

wnκδks ,p,q,m,nG
q (x; Θ) , (15)
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where

wn =
(−1)n 2−(2n+1)/2

(2n+ 1)n!
,

κδks ,p,q,m,n =

∞∑
k1=1

∞∑
k2=1

...

∞∑
k2n+1=1

δ (k1, k1, ..., k2n+1)ψp,q,m,n,

δ (k1, k1, ..., k2n+1) = δk1δk2 ...δk2n+1
,

δks =

2ks−1∑
j=0

∞∑
m=0

(−1)j+m 2j+1

(
2ks − 1

j

)(
βj

m

)
, s = 1, 2, ..., 2n+ 1,

ψp,q,m,n =

∞∑
p=0

p∑
q=0

(−1)p+q
(
αm(2n+ 1)

p

)(
p

q

)
,

(
z

w

)
=
z(z − 1)(z − 2)...(z − w + 1)

w!
.

Differentiating (15) w.r.t. x gives the pdf of the NKUM – G in expanded form as

f (x;α, β,Θ) =
1

π

∞∑
n=0

wnκδks ,p,q,m,nqg(x; Θ)Gq−1 (x; Θ) . (16)

It is evident from (16) that the density of the NKUM – G is an infinite linear combination of the
density of the exponentiated family of distribution with exponentiation parameter q (Mudholkar
and Srivastava (1993). Thus some structural properties of the NKUM – G family of distributions
can be obtained from well- established properties of the exponentiated family of distributions. The
properties of the exponentiated family of distributions have been studied by many authors and
profoundly by Gupta et al. (1998).

4.2 Quantile function of the family

The quantile function of the NKUM – G family, obtained from finding the root of the equation
F (Q(p);α, β,Θ) = p, is expressed as

Q(p) = G−1

{[
1−

(
eΦ−1(p) + 1

)−1/β
]1/α

}
. (17)

Suppose U is a uniform random variable on (0, 1), random variates can be obtained from the NKUM
– G family using the relation

X = G−1

{[
1−

(
eΦ−1(U) + 1

)−1/β
]1/α

}
. (18)
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4.3 Moments of the family

Suppose Y is a random variable following the exponentiated family of distributions with exponenti-
ation parameter q, let E(Y r

q ) be the rth non-central moment of Y then the rth non-central moment
of the NKUM – G family random variable X can be expressed as

E(Xr) =
1

π

∞∑
n=0

wnκδks ,p,q,m,nE(Y r
q ). (19)

Since the quantity in (16) is absolutely integrable the incomplete moment IX(t) and the moment
generating functionMX(t) of the NKUM – G random variable X can be written as

IX(t) =

∫ t

−∞
xsf(x;α, β,Θ)dx =

1

π

∞∑
n=0

wnκδks ,p,q,m,nIY (t),

where IX(t) is the incomplete moment of the random variable Y following the exponentiated family
of distribution with exponentiation parameter q and

MX(t) =
1

π

∞∑
n=0

wnκδks ,p,q,m,nE(etY ), tεR,

where E(etY ) is the moment generating function of the random variable Y following the exponen-
tiated family of distribution with exponentiation parameter q.

4.4 Order statistics

Order statistics play a very crucial row in non-parametric statistics and inference. For a random
sample X1, X2, ..., Xn of size n from the NKUM – G distribution with corresponding order statistics
X1:n < X2:n < ... < Xn:n, the pdf of the kth order statistic is given by

fk:n(x) =
1

B(k, n− k + 1)
f(x)[F (x)]k−1[1− F (x)]n−k,

and then

fk:n(x) =

n−k∑
i=0

(−1)i

B(k, n− k + 1)

(
n− k
i

)
f(x)[F (x)]k+i−1, (20)

where f(x) and F (x) are taken to be the pdf and cdf of the NKUM - G distribution respectively.

5. Maximum likelihood estimation of the parameters of the family

For a complete random sample x1, x2, ..., xn of size n from the NKUM – G distribution, the total
log-likelihood function is given by

L = nlogα+ nlogβ +

n∑
i=1

log(g(xi; Θ)) + (α− 1)

n∑
i=1

log(G(xi; Θ))− (β + 1)

n∑
i=1

log(1−Gα(xi; Θ))

+

n∑
i=1

log[φ(log((1−Gα(xi; Θ))−β − 1))]−
n∑
i=1

log((1−Gα(xi; Θ))−β − 1). (21)
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The maximum likelihood estimates of the parameters α, β and the vector of parameters Θ are
obtained by numerically solving the systems of equations

∂L

∂α
=
n

α

n∑
i=1

log(G(xi; Θ)) + (β + 1)

n∑
i=1

Gα(xi; Θ)log(G(xi; Θ))

1−Gα(xi; Θ)

−β
n∑
i=1

Gα(xi; Θ)log(G(xi; Θ))(1−Gα(xi; Θ))−β−1

(1−Gα(xi; Θ))−β − 1

+β

n∑
i=1

Gα(xi; Θ)log(G(xi; Θ))(1−Gα(xi; Θ))−β−1φ′(log((1−Gα(xi; Θ))−β − 1))

((1−Gα(xi; Θ))−β − 1)φ(log((1−Gα(xi; Θ))−β − 1))
= 0

∂L

∂β
=
n

β
−

n∑
i=1

log(1−Gα(xi; Θ)) +

n∑
i=1

(1−Gα(xi; Θ))−βlog(1−Gα(xi; Θ))

(1−Gα(xi; Θ))−β − 1

−
n∑
i=1

(1−Gα(xi; Θ))−βlog(1−Gα(xi; Θ))φ′(log((1−Gα(xi; Θ))−β − 1))

((1−Gα(xi; Θ))−β − 1)φ(log((1−Gα(xi; Θ))−β − 1))
= 0

∂L

∂Θk
=

n∑
i=1

∂(log(g(xi; Θ))

∂Θk
+ (α− 1)

n∑
i=1

∂(log(G(xi; Θ))

∂Θk
− (β + 1)

n∑
i=1

∂(log(1−Gα(xi; Θ))

∂Θk

+

n∑
i=1

(
∂log[φ(log((1−Gα(xi; Θ))−β − 1))]

∂Θk
− ∂log((1−Gα(xi; Θ))−β − 1)

∂Θk

)
= 0

for the parameters α, β and the vector of parameters Θ. Since the resulting systems of equations
are not in closed form, the solutions can be found numerically using some specialized numerical
iterative scheme such as the Newton-Raphson type algorithms, which can be implemented on several
computing software like R, SAS, MATHEMATICA and MATLAB.

6. Application and discussion of results

In this section, some members of the NKUM – G family of distributions namely: NKUM – Weibull
(NKUM – W), NKUM – normal (NKUM – N) and NKUM – Gumbel (NKUM – Gu) are applied
for the fitting of a real data set and the result compared with those of some members of the beta
– generated and Kumaraswamy – generated classes namely: beta - normal (BN) (Eugene et al.
2002), beta - weibull (BW) (Famoye et al. 2005), beta - Gumbel (BG) (Nadarajah and Kotz, 2004),
Kumaraswamy – Normal (Kw-N), Kumaraswamy – Weibull (Kw-W) and Kumaraswamy – Gumbel
(Kw-G) (Cordeiro and de Castro 2011) distributions. The data set represents the breaking stress of
carbon fibers of 50 mm length (GPa). The data was obtained from Nicholas and Padgett (2006).
The data set is unimodal, approximately symmetric and almost mesokurtic (Skewness = -0.1315
and kurtosis = 0.2231). The data is presented in Table 1.
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Table 1: Breaking stress of carbon fibers of 50 mm length (GPa)
0.39, 0.85, 1.08, 1.25, 1.47, 1.57, 1.61, 1.61, 1.69, 1.80, 1.84, 1.87, 1.89, 2.03, 2.03, 2.05, 2.12,
2.35, 2.41, 2.43, 2.48, 2.50, 2.53, 2.55, 2.55, 2.56, 2.59, 2.67, 2.73, 2.74, 2.79, 2.81, 2.82, 2.85,
2.87, 2.88, 2.93, 2.95, 2.96, 2.97, 3.09, 3.11, 3.11, 3.15, 3.15, 3.19, 3.22, 3.22, 3.27, 3.28, 3.31,

3.31, 3.33, 3.39, 3.39, 3.56, 3.60, 3.65, 3.68, 3.70, 3.75, 4.20, 4.38,4.42,4.70,4.90

The results of the fit of all the nine (9) distributions to the data set using the maximum likelihood
method are contained in Table 2. These results include the estimates of the parameters and their
standard errors (in parenthesis) of all the fitted distributions, the Kolmogorov – Smirnov (K-S)
statistic and its corresponding p-value (in parenthesis), Akaike Information Criterion (AIC) and the
loglikelihood (loglik) values of all the fitted distributions. The graph of the fitted densities alongside
the histogram of the data set is given by Figure 7.

Results in Table 2 show that all the nine (9) distributions provided good fits to the data set with
the Kw – G distribution having the overall best fit since it has the smallest AIC value, smallest
K – S statistic value and the highest p-value among all the fitted distributions. However, members
of the NKUM – G family of distributions performed so well in fitting the data set. In fact, all the
members of the NKUM – G family outperformed the Kw – W and Kw – N in fitting the data set.
This application clearly reveals that probability distributions belonging to the NKUM – G family
can compete favorably with the well-established members of the beta-generated and Kumaraswamy
generated classes of distributions and hence present another useful alternative to these generators
of flexible probability distributions.

Table 2: Maximum likelihood estimates of parameters of the fitted distributions to the data

Distribution α̂ β̂ ĉ k̂ loglik AIC K - S

NKUM - Gu 38.8132 26.7777 4.8078 -8.5712 -85.85 179.71 0.0832
- (120.11) (64.641) (3.0154) (16.162) - - (0.7193)

NKUM - W 0.2252 0.0701 1.1674 2.4583 -85.79 179.58 0.0921
- (0.0214) (0.0057) (0.0041) (0.0040) - - (0.5981)

NKUM - N 1.0285 1.5279 1.7038 3.3041 -85.88 179.77 0.0808
- (8.3330) (10.330) (7.7239) (3.5105) - - (0.7511)

BG 0.6545 14.2410 2.1458 5.5606 -85.42 178.84 0.0728
- (0.9943) (20.437) (1.5486) (1.7371) - - (0.8502)

BW 0.7629 3.9685 4.6600 4.0583 -85.92 179.84 0.0811
- (0.3774) (43.581) (12.947) (1.3049) - - (0.7468)

BN 2.8032 6.9044 2.0008 3.9804 -85.45 178.91 0.0735
- (31.978) (82.030) (12.390) (7.4269) - - (0.8425)

Kw - G 4.5765 23.0857 2.7284 2.0617 -85.42 178.83 0.0727
- (19.279) (33.302) (1.0785) (11.449) - - (0.8513)

Kw - W 0.7907 5.2449 5.1496 4.1787 -86.03 180.05 0.1453
- (0.9002) (144.77) (39.864) (6.3870) - - (0.1115)

Kw - N 1.4149 0.0999 0.4657 1.0992 -88.78 185.56 0.1597
- (0.0172) (0.0123) (0.0020) (0.0020) - - (0.0614)
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7. Conclusion

A new family of univariate probability distributions has been introduced in this paper. The new
family of distributions can be expressed as infinite linear combination of the exponentiated family of
distributions widely studied in the literature. This result makes it possible to study the properties
of the new family by simply using the results obtained for the exponentiated family of distributions.
Three members of the new family have been defined, and the shapes of their density and hazard
functions shown. The flexibility of members of the new family in real life applications have been
shown by application to a real data set where the members of the new family not only provided ade-
quate fit to the data set, but also competed favorably with members of the beta and Kumaraswamy
generated classes and hence, presents good alternatives to these well-established distributions. It is
hoped that several other members of the new family are studied and applied to disparate data sets.

Figure 7: Fitted density for breaking stress of carbon fibers of 50 mm Length (GPa)
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