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Abstract. In this paper we compare the performances of several two parameter discrete
distributions in modeling over-dispersed count data. Particularly, we are interested in the
performances of two newly proposed two parameter distributions, namely, the ATPPSD
’another two-parameter Poisson-Sujatha Distribution” ATPPSD (Shanker et al., 2020) and
the Bell-Tuchard (BT) distribution with some of other well known two-parameter discrete
distributions: the negative binomial (NB); the generalized Poisson (GP), the Poisson-
Lindley (GPL), the discrete Weibull (DW) and the Poisson-inverse Gaussian (PIG) distri-
butions. These distributions are applied to a variety of data sets exhibiting over dispersion.
The two distributions perform poorly in most of the data set examples. Zero-inflated (ZI)
versions of the models are also implemented because the regular models perform poorly
with data exhibiting excess zeros.In most cases, the two distributions grossly underesti-
mate the observed variances in the data sets and this subsequently lead to their poor fitting
performances. The PIG and DW distributions will be suitable alternative models to the
NB and GP models for modeling over dispersed count data.They perform in many cases
better than the NB and GP models but the latter two models are very reliable and they
both perform very well in most of the examples. For moderately over-dispersed data, the
ATPPSD and BT distributions seem to do well.
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1. Introduction

For count data exhibiting over or under dispersion, the most often used discrete
distributions are the negative binomial (NB), the generalized Poisson (GP) and
other two parameter based distributions such as the Sankaran (1970) Poisson-
Lindley (GPL), the Com-Poisson (Shmueli et al., 2005; Sellers et al., 2012)
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(CP) , the Bardwell & Crow (1964); Lawal (2017b) Hyper-Poisson (HP), the
discrete Weibull (DW), and the Holla (1966) Poisson Inverse Gaussian (PIG)
amongst several others.

These distributions all have extra dispersion parameters that transform their
variance functions from linear (as in the case of Poisson) to quadratic or cu-
bic functions. For instance, the variance functions of the NB and GP are re-
spectively, ;(1 4+ ku) and p(1 + ap)?. All these alternative distributions to the
one-parameter Poisson have received considerable attention in the literature.
Recently, several two-parameter mixture distributions with the Sunjatha dis-
tributions are introduced. These include,the Poisson-Sujatha (PSD) (Shanker,
2016), a generalization of the Poisson-Sujatha distribution (AGPSD) (Shanker
and Shukla, 2019), the two-parameter Poisson-Sujatha distribution (TPPSD)
proposed in Shanker and Shukla (2020) and the discrete Poisson-Akash distri-
bution (Shanker, 2017) to name just a few, Our discussion in this paper how-
ever, focuses on the performances of these two-parameter distributions with the
well established ones, such as the NB and the GP distributions. We particularly
compare the "another two-parameter Poisson-Sujatha Distribution” which is ap-
propriately called ATPPSD(6, o) and recently proposed in Shanker et al. (2020)
and the Bell-Tuchal (Castellares et al., 2019) distributions. The ATPPSD hav-
ing a random variable Y, is a mixture of the Poisson P()\) and ATPSD(6, «)
distributions. That is,

Y|\ ~ Poisson(\), and \|0,a ~ ATPSD(0, )
Thus,

e\

flylA) =

—, y=01,..., A>0; and
g (1)

3
(14 aX+ ar?)e

T @) = o 2a

where A > 0,60 > 0, > 0.

The ATPSD is the Mussie and Shanker (2019) ‘another two-parameter Sujatha
distribution’.

The mixture expression above can be succinctly written as P(\) A
ATPSD(0,a) ~ ATPPSD. In this case, the mixture model is obtained by eval-
uating the well-known integral:

fly) = /0 YISO, a)dx @)

The resulting unconditional pmf from (2) being therefore, ‘another two-
parameter Poisson-Sujatha Distribution’ (ATPPSD) defined as

’y:O717"' (3)

3 a(y? a 2
f(yl&oz)z{ f 1 [ (" +0+3)+ay@+4)+ (6> +20+1)

62 + af + 2 (6 +1)y+3
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for6 > 0 and o > 0.

Aderoju (2020) called this distribution the new generalized Poisson-Sujatha
distribution (NGPSD). We will however refer to this distribution here as the
ATPPSD.

The mean and variance of the distribution is given respectively in Shanker et al.
(2020) as:

[ 6% +2a(6 + 3)
H= e +a(9+2)]] (4a)
[02(0 + 2) + 2a{12 + 60 + 6%)}
2 _ 9
| 0202 + (6 + 2)} ] a (4b)

with (4b) reducing to:

o Y0+ 1) + ab?(16 4 120 + 36%) + 202(6 + 120 + 66> + 67) 5)
7= 0262 + a(2 + 02

The various distributional properties of this distribution have been fully dis-
cussed in Shanker et al. (2020). When o« = 1 the distribution reduces to the
Poisson-Sujatha distribution (PSD) with pmf (Shanker, 2016b):

P(Yl9)=l 63 1<y2+(0+4)y+(6’2+30+4)>

; =0,1,..., 0 6
0%+ 0 +2 (0 +1)y+3 » y=01..,6>0 (0

The ATPPSD reduces to the geometric when o = 0.

1.1 The Discrete Bell-Touchard Distribution

The Bell-Touchard discrete distribution (Castellares et al., 2019) has the pmf
for a random variable Y having a BT distribution given by:

=)y, (0)

f(yloz,ﬁ) - y!

Y y:071727"' (7)

where o > 0,60 > 0 and 7T),(¢) are the Touchard polynomials defined as:

o]

npk
7,0) =3 0 (8)

k!
k=0

such that 7T)(#) = 1,71(0) = 0 and so on. When 6 = 1, then we have

1 o= k"
Tn(l):Bn:EZE
k=0

http://www.bjs-uniben.org/




25 Lawal

where ,, are the Bell numbers (Comtet, 2010) with for instance, By = B} =
1; By = 2,..., Byp = 115975 and so on. Its mean and variance (Castellares et
al., 2019) are given respectively in (9)

= Oae” (9a)
o? =0(1 + a)ae® (9b)

The dispersion index (DI) is 1 + « and since « > 0, thus, DI > 1 which implies
that the distribution will be most suitable for over-dispersed count data.

In this paper, we will also explore two-parameter distributions NB, GP, and GPL
with the TPPSD but with eight different sets of data which include the distribu-
tion of epileptic seizure data employed in Aderoju (2020). These distributions
are briefly described below:

1.2 The Negative Binomial-NB

The Negative binomial distribution (NB) has the probability mass function

(pmt):

I'(r+y)
y!(r)

where r € (0,00) > p and p € (0,1). The mean and variance of the NB model
with parameters r and p in (10) are given respectively in (11a) and (11b) respec-

fly;r,p) = p1-p), y=01,... (10)

tively.
Hence,
p=rp/(l—p) — p =" (11a)
T+
P
o2 = rp/(1 — p)2 — 02:,u + ,u? (11b)

Of course the NB is a mixture of the Poisson-Gamma distributions.

2. Materials and Method

2.1 The generalized Poisson-Lindley (GPL) Distribution

The GPL having Y ~ GPL(a,vy = 1,0), proposed in Mahmoudi and Zak-
erzadeh (2010) has the pmf given by:

[(y + a)fot! (a + %)

y!T(1 4+ «)(1 + §)ytatl
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It is a mixture of Poisson distribution and the generalized Lindley (GL) distri-
bution (Zakerzadeh and Dolati, 2009). Its moments are:

E(Y) = C“(;Ji)g Lo (13a)
By?) =t 0F 19)2[?1(12)9 )+ (13b)

Hence, variance is:

s a0+ 1)P3+6%+30+1
7= 02(0 1 1)2

(14)

and the Dispersion Index is:

a@+1)2+20+1

M T D 00+ 1)

indicating over-dispersion for values of « and 6, with equi-dispersion occurring
if

al@+1)2+20+1
af(0+1)2+0(0+1)

2.1.1 The Generalized Poisson Distribution-GP:
The type I generalized Poisson regression (GPI) model has the following pmt:

Yi =1
i (1 + ay;)” pi(1+ ayi)
Pr(y;, i, o) = e ——72 %y =0,1,... 15
(yz Mg ) <1 I CY/M) v Xp (1 I Oé/ﬁ) Yi (15)

with mean
E(Y;) = pi; and  Var(Y;) = (1 + o). (16)

Consul and Famoye (1992) have also considered the GPI model for over-
dispersed data because like the NB model, the GP also has a dispersion pa-
rameter «. The GP reduces to the Poisson when o = 0.

2.1.2 The Poisson-inverse Gaussian (PIG) Distribution

The Poisson-inverse Gaussian (PIG) distribution was introduced by Willmot
(1987) and has the pmf:

Po y=20
_ y+k
F@lnB) =S popv L= (y—14k)! [ 8\ = (17)
2/! Z(y—l—k)!k! (ﬂ) (1+26) ( i ) y="L2...
k=0
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where py = exp {%[1 — (14 25)1/2]}, with 4 > 0 and g > 0.

Its mean an variance are given respectively as:

E(Y)=p and o%=pu(l+p3) (18)

and since 8 > 0, hence the dispersion index (DI) > 1. Thus, the PIG would be
most suitable for over-dispersed count data.

2.1.3 The Discrete Weibull Distribution

The discrete Weibull distribution was introduced by Nakagawa and Osaki
(1975) as a discrete counterpart of the continuous Weibull distribution and is
usually referred to as ‘type I discrete Weibull distribution’, in order to distin-
guish it from two other models proposed later by Stein and Dattero (1984) (type
IT discrete Weibull) and Padgett and Spurrier (1985) (type III discrete Weibull).
It is derived from the continuous Weibull distribution with probability mass
function (pmf) given by

filt; A, B) = MBI e (19)

for A, 8 > 0 and the corresponding cdf is:

Rt A\ pB)=1—e (20)

Following(italia), for a random variable Y = |T'|, where |T'| is the largest in-
teger equal or smaller than the r.v T in (19), then the pmf defined on the non-
negative integers only can be shown to be:

P(y:q,8) = Fi(y+ 1) — F(y) S VAR (28 Vi
= qyﬁ —q(erl)B y=20,1,... (21)
where ¢ = e and 0 < ¢ < 1. The model in (20) is the type I Discrete Weibull

distribution, proposed in Nakagawa and Osaki (1975). It has the cumulative
distribution function (cdf) given by:

1—q¥t)” fory=0,1,2,...
F . — Y Y )
Some properties of the DW (q, ) are,

e Pr(0) = 1— q. Thus, when ¢ is small, then we would have an excess zero.
http://www.bjs-uniben.org/
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e The dispersion index DI = %2 can be: underdispersed, overdispersed or
equi-dispersed for DI < 1, DI > 1 or DI = 1 respectively.

Other properties of the DWW (q, B) are succinctly described in Kalktawi et al.
(2015).

The mean and variance of the DW do not have closed form expressions, how-
ever, the mean and variance can be computed from the following infinite sums
Viz:

EY)=) ¢ (22a)
y:

E(Y?) =2) y¢¥ —B(Y) (22b)
y=1

The expression in (22a) for instance leads to a closed expression if and only if
f = 1, in which case E(Y) = % From (22), we observe that E(Y), for a
—q

fixed ¢ 1s a decreasing function of 5. Khan et al.(1989) have shown that

1

E(Y) < E(T) = (_10;) B (1 + %) < BY)+1 23)

3. Estimation

For a single observation ¢, the log-likelihood for the ATPPSD, Bell-Tuchard,
GPL, NB,GP, DW and PIG models are presented respectively in LLL1 to LL7 in
(24).

LL1 = 3 log(#) + log [a(yiz +0+3) + ay(0+4) + (6% +20 + 1)}

—log (0% + af +2a) — (y; +3) log (f + 1) (24a)
LL2 =6 + [1 — exp(«)] + ylog(a) + log[T},(#)] — log y! (24b)
LL3 = log[['(y + a)] + (o + 1) log(#) + log [a + gij:(;}

—logy! —log[l'(1+ )] — (y + o+ 1) log(1 + 0) (24¢)
LL4 = log[I'(ry)] + ylog(p) + rlog(l — p) — log y! — log[I'(r)] (244d)
LS =yt (25 ) o = ) ton(1 ) - L) oy e
LL6 = log {qyﬁ — q(y“)ﬁ} (241)

| log(p0) ify=0
LL7= {mg(pm +ylog() — log(y!) +1og(Q) if y >0 (248)
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where,

k
— -1+ (B8 (=

Q:Z(y(y—l—k)!)k! (ﬂ) (h+26) ( : )
k=0

and p0 is as defined earlier.
Maximum-likelihood estimation of (24) is carried out with

e PROC NLMIXED in SAS, which minimizes the function —LL(y, ©) over
the parameter space © numerically. The integral approximations in PROC
NLMIXED is the Adaptive Gaussian Quadrature (Pinheiro and Bates,
1995) and our choice optimization algorithm here is the Newton-Raphson
techniques.

e Can also be implemented in R using package optim

4. Applications

The above models are applied to the distribution of epileptic seizures
(Chakraborty, 2010). The data has n = 351 observations with observed mean
1 = 1.5442 and corresponding observed variance being 0> = 2.8830. Con-
sequently, the dispersion index (DI) is 1.8671 > 1, indicating that the data is
over-dispersed. Our results for the implementation of these distributions are
presented in Table 1. We summarize the results from the Table as follows:

Table 1: Observed and Expected values under the various Models

Y count P NB GP GPL ATPPSD BT PIG DW
0 126 74.9354 120.2197 118.1122 121.5086 122.2712 125.8531 114.1046 120.1194
1 80 115.7122 92.9960 95.8102 91.4895 89.5487 80.3830 100.7742 92.8754
2 59 89.3391 59.1732 59.8862 58.7114 58.8075 61.1512 61.4528 59.0357
3 42 45.9846 34.9447 34.4855 35.0930 35.7925 38.5677 33.7758 35.1327
4 24 17.7519 19.8372 19.2356 20.0986 20.6229 22.0839 18.1988 20.0714
5 8 5.4823 10.9888 10.5921 11.1793 11.4049 11.7983 9.8892 11.1307
6 5 1.4109 5.9867 5.8060 6.0859 6.1103 5.9538 5.4638 6.0289
7 4 0.3112 3.2224 3.1806 3.2586 3.1922 2.8638 3.0723 3.2024
8 3 0.0601 1.7187 1.7447 1.7218 1.6339 1.3223 1.7558 1.6727

Total  351.00 3509878  349.0873  348.8532  349.1467 3403841  349.9772 3484873  349.2694
0.0122)  (1.9127)  (2.1468) (1.8533)  (1.6159)  (23450)  (25127)  (1.7306)

Y < a 12 31 32 30 30 29 47 30
[=15442  p=04990 [=15442 a=12920 G&=13156 &=0.8828 [i=1.5442  G=0.6573

7=15501  #=0.2705  6=1.1390  6=1.3716  0=0.7235 [=1.0285  [=1.1561

M 1.5442
o? 2.8830
7 1.5442 1.5442 1.5442 1.5447 1.5448 1.5442 1.5442 1.5429
52 1.5442 3.0825 3.1038 3.0928 3.0433 2.9073 3.1323 3.0374
X2 117.8674 5.6656 7.1279 5.0862 4.2040 2.5588 10.5297 5.4867
d.f 5 6 6 6 6 6 6 6
p-value 0.0000 0.4617 0.3092 0.5328 0.6491 0.8618 0.1040 0.4831
X2, 6534723 3274076  325.1018 3262649 3315707  347.0760  322.1478  332.2126
d.f. 349 348 348 348 348 348 348 348
2LL 1272.1 1189.9 1191.7 1189.2 1188.1 1185.8 1195.6 1189.5
AIC 1274.1 1193.9 1195.7 1193.2 1192.1 1189.8 1199.6 1193.5
BIC 1278.0 1201.6 1203.4 1200.9 1199.8 1197.5 1207.3 1201.2

From the results in Table 1, we can make comparisons with results presented in
Aderoju (2020), viz:

(a) The results for the NB presented in Aderoju (2020) are completely wrong.
The parameter estimates under the NB are as presented in Table 1 together
with the correct expected frequencies, which lead to grouped Pearson’s
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X2 = 5.6656 on 6 d.f. (p-value=0.4617), thus a good fit. Aderoju has
reported X? to be 22.53 on 6 d.f.

All the X 92 computed here have taken into consideration the problem of

small expected frequencies and has accordingly applied the Lawal (1980)
rule with the appropriate d.f.

(b) The sum of the expected values under each of the models do not add to
n = 351. Consequently, we can add the differences (presented in paren-
theses) to the last category to make the sum in each add to 351. Thus for
the ATPPSD for instance, this would be (1.6339+1.6159=3.2498). Lawal
(2017a) has provided an alternative way of handling this situation which
is peculiar to all count model distributions.

(c) We observe here that all the models produced estimated means that are very
close to the observed mean, but the estimated variances (with the excep-
tion of the Poisson) are all higher than the observed variance of 2.8830.
The BT has a theoretical variance of 2.9073 for this data set and this value
1s the closest to the observed variance of 2.8830 amongst the distributions,
and also produces an estimated mean of 1.5442.

351 A \2
(d) The Wald’s test statistics X %V = Z w 1s lowest for the PIG model
i=1 i
because it has the largest estimated variance of 3.1323.

(e) In general, all these other models fit the data except the Poisson, however,
the Bell-Touchard (BT) distribution is the most parsimonious for this data
set based on the grouped X 3 GOF of 2.5588 on 6 d.f (pvalue=0.8618).

This 1s closely followed by the ATPPSD.
(f) The parameter ¢ in the discrete Weibull is modeled here in the logit form.

As observed in Lawal (2017a, 2019), one common feature of all discrete distri-
butions for frequency count regression models is that they all have infinite range.
Consequently for real life data, like the data in Table 1, where, Y = 0,...,8
for example, it is most common to observe that estimated probabilities under
any of the above models are not necessarily summing to 1.00 within the range
0 <Y < 8 as expected for a probability mass function, and consequently, the
expected values will also not sum to n, the sample size. To overcome this, the
practice has often been to add the shortfall expected values to the last category
expected value, that is category 8 in our case.

The ATPPSD and BT as discrete probability distribution are no exceptions to
this problem of estimated probabilities not summing to 1.00 within the range of
actual data. We present below the following results under the implementation
of the ATPPSD model to the data in Table 1.

Here, under each of the estimated models, the likelihoods are obtained and the
corresponding expected probabilities computed. With these, the means are ob-

k k

tained as Z JDj, with, E(YQ) = Z j2g§j, and hence the corresponding vari-
j=0 j=0

ance of Y.

We present in Table 2 these computations for the ATPPSD model, where, 7; is
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the estimated probability at Y = j, >

i<;j Ti are the cumulative probabilities.

Similarly, /m; and ), .7, are the predicted expected values and the corre-

J

sponding cumulative expected frequencies respectively. ji;, vv and &? are the

k k

expressions Z J7j, E(Y?) = Z j2frj, and variance of Y respectively.

=0 7=0

Table 2: Moments Computation under ATPPSD Model

T D i< i 1 D ici M I Vv Uj»

. . 27 27 . . .
0.25512  0.60348 89.5487 211.8198 0.255124 0.255124 0.190036
0.16754 0.77102 58.8075 270.6273 0.590210 0.925295 0.576948
0.10197 0.87299  35.7925 306.4198 0.896129 1.843052 1.040005
0.05875 0.93175 20.6229 327.0427 1.131148 2.783128 1.503633
0.03249 0.96424 11.4049 338.4477 1.293611 3.595446 1.922016
0.01741 0.98165 6.1103  344.5580 1.398061 4.222144 2.267569
0.00909 0.99074  3.1922  347.7502 1.461724 4.667781 2.531146
0.00466 0.99540 1.6339 3493841 1.498964 4.965707 2.718813**
0.00234 0.99774  0.8223  350.2064 1.520048 5.155465 2.844918

—

BENeloEN [0 )RV, BN ] ST

16 0.00001 0.99999  0.0050  350.9957 1.544543 5.425638 3.040025
17 0.00001 0.99999  0.0023  350.9980 1.544655 5.427546 3.041586
18 0.00000 1.00000 0.0011  350.9991 1.544710 5.428541 3.042411
19 0.00000 1.00000  0.0005  350.9996 1.544737 5.429054 3.042841
20 0.00000 1.00000  0.0002  350.9998 1.544751 5.429317 3.043063
21 0.00000 1.00000  0.0001  350.9999 1.544757 5.429450 3.043176
22 0.00000 1.00000  0.0000  351.0000 1.544760 5.429517 3.043234
23 0.00000 1.00000  0.0000  351.0000 1.544761 5.429550 3.043263
24 0.00000 1.00000  0.0000  351.0000 1.544762 5.429567 3.043277
25 0.00000 1.00000  0.0000  351.0000 1.544762 5.429575 3.043284
26 0.00000 1.00000  0.0000  351.0000 1.544763 5.429579 3.043288
27 0.00000 1.00000  0.0000  351.0000 1.544763 5.429581 3.043289
28 0.00000 1.00000  0.0000  351.0000 1.544763 5.429582 3.043290
29 0.00000 1.00000  0.0000  351.0000 1.544763 5.429582 3.043291
30 0.00000 1.00000 0.0000 351.0000 1.544763 5.429583 3.04329]1***

In the appendix is a SAS program that generates the results in Table 2. AtY =8,

g = 0.00466 and P(Y < 8) = 0.99540 < 1.0000, hence, not yet a
probability mass function

mg = 1.8339-expected value and thus the cumulative sum of expected
values=349.3841 < n = 351

The empirical mean and variance at Y = 8 are 1.498964 and 2.718813
respectively. These are far from the theoretical means computed from ex-
pressions in (4) which are respectively 1.54476 and 3.04329.

These theoretical means are not achieved until Y = 30. At Y = 30, the
computed mean and variance agree with the theoretical moments com-
puted from expressions (4a) and (4b) respectively.

In Table 1 are the values of Y = y, at which these values are obtained for
each of the distributions.

5. Models Applied to other Data sets

We present in the following sections applications of the distributions to var-
ious data sets exhibiting various characteristics. The data sets employed here
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include those with excess zeros, and over-dispersed data sets. The behaviors of
the ATPPSD and the BT are compared with these other distributions.

5.1 Example II: Insurance Claims Data

This example is taken from Zhang et al. (2018) and relate to claim counts of
third party liability vehicle insurance in a Zaire insurance company (Willmot,
1987). The data in Table 3 are therefore the distribution of claims from 4000
vehicle polices.

Table 3: Distribution of Claims from an Insurance Company

Y Count P NB GP GPL ATPPSD BT PIG DW
0 3719 36685422  3719.2220  3719.1171  3718.7800  3681.4477  3718.1079  3718.5830  3719.1842
1 232 317.3289 2299009  231.1393  229.5930 293.1083 2272675 2345413 230.9350
2 38 13.7245 39.9106 38.4134 41.3966 23.4067 46.4030 34.8566 38.6770
3 7 0.3957 8.4156 8.4195 8.1604 1.8738 7.1203 8.3175 8.3249
4 3 0.0086 1.9313 2.1076 1.6484 0.1503 0.9608 2.4461 2.0678
5 1 0.0001 0.4648 0.5705 0.3361 0.0121 0.1231 0.8035 0.5663
Total 4000  4000.0000  3999.8453  3999.7680  3999.0135  3999.9989  3999.0826  3999.5479  3999.7882
(0.4044) (0.6195) (0.8026) (0.4226) (2.0372) 0
7i=00865  p=0.2854  [1=0.0865  &=0.1332 _ &a=05213  &=03472 _ [i=0.0865 _ G=0.0702
7=02166  7=2.1741 0=3.9018  6=12.1794  6=0.1760  [B=0.4404  (3=0.7229
w 0.0865
o? 0.1225
7 0.0865 0.0865 0.0865 0.0864 0.0866 0.0865 0.0865 0.0865
s2 0.0865 0.1210 0.1221 0.1192 0.0941 0.1165 0.1246 0.1221
X2 344.1898 1.1738 0.6734 2.3660 61.6539 2.5594 0.6972 0.6918
d.f. 2 3 3 3 1 1 3 3
p-value 0.0000 0.7593 0.8794 0.5000 0.0000 0.1096 0.8739 0.8751
X2, 5665.5607  4048.6975  4013.9084  4109.9549  5207.9813  4205.3349  3933.2935  4014.0163
df. 3998 3997 3997 3997 3997 3997 3997 3997
2LL 24922 2367.1 2366.8 2367.9 24145 23724 2367.0 2366.8
AIC 24942 2371.1 2370.8 2371.9 24185 2376.4 2371.0 2370.8
BIC 2500.4 2383.7 2383.4 2384.4 2431.1 2389.0 2383.0 2383.4

The observed data has a mean of 0.0865 and thus under the Poisson model the
percentage of expected zeros would be exp(—0.0865)=91.72%. However the
observed data has about 93.98% zeros. Clearly with this percentage, the NB,
GPL GP, PIG and DW models fit this data set well, but the DW is the most
parsimonious. The ATPPSD does poorly for this data set.

The percentage of observed zeros is not too far from that expected under the
Poisson and the data is not zero-inflated. Here again, the X g2 computed have

taken into consideration the problem of small expected frequencies and has ac-
cordingly applied the Lawal (1980) rule. We also observe that computed means
and variances of the NB, GP and GPL are very close to those from the ob-

served data, especially the computed variances. The BT does much better than
the ATPPSD.

5.2 Genetics: Chromatid Aberrations

The data in Table 4 give the distribution of number of chromatid abberations
(0.2 g. chinon I, 24 hours) on chemically induced chromosome aberrations in
cultures of human leukocytes. The data has been analyzed by Loeschke and

Kohler (1976) and Janadan and Schaeffer (1977).
The most parsimonious model here being the PIG both in terms of AIC, BIC

and grouped Pearson’s X 3, with a p-value of 0.8694 after applying the Lawal’s
(1980) rule. We observe here that both the ATPPSD and the BT models underes-
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timate the variance of the data, hence, they fit poorly. As observed earlier, none
of the models have estimated probabilities summing to 1.00 within the range
[0,7] of the observed data.

Table 4: Observed and Expected values under the various Models

Y count P NB GP GPL _ ATPPSD BT PIG DW
0 268 2313576  270.1749  270.0660  269.2444  259.1486  267.2108  269.2058  270.5137
1 87 126.6683 78.5520 79.9695 78.7115 90.6991 76.7325 83.4962 78.5290
2 26 34.6754 29.8381 28.8742 30.8543 32.1471 35.7758 27.1236 29.6252
3 9 6.3283 12.2203 11.6553 12.5425 11.5044 13.4900 10.5483 12.0673
4 4 0.8662 5.1864 5.0432 5.1261 4.1454 4.6321 4.6944 5.1317
5 2 0.0948 2.2473 2.2876 2.0919 1.5004 1.5021 22822 22532
6 1 0.0087 0.9872 1.0736 0.8510 0.5445 0.4645 1.1774 1.0130
7+ 3 0.0007 0.4375 0.5170 0.3450 0.1978 0.1378 0.6335 0.4642
Total 400.00 400.00  399.6441 3904864  399.7667  399.8874  399.9456  399.1614  399.5873
Y <ya 7 21 28 28 20 19 42 29
=05475 p=04690 =05475 &=04740 &a=0.0921 &=0.6453 [=05475  G=0.3237
7=0.6200  #=0.7194  H=1.5776  0=2.0474  6=0.4450 [3=1.0580 [=0.8694
o 0.5475
o? 1.1256
g 0.5475 0.5475 0.5475 0.5464 0.5480 0.5475 0.5475 0.5469
52 0.5475 1.0310 1.0637 0.9881 0.8605 0.9008 1.1268 1.0430
X2 39.1563 5.3321 3.4848 75178 13.9158 12.4628 1.2522 4.7900
df 2 4 4 4 4 3 4 4
p-value 0.0000 0.2549 0.4802 0.1109 0.0076 0.0060 0.8694 0.3094
X2, 8202694 4355968 4222078 4544883 5219093 4985472 3985717  430.5776
df. 398 398 398 398 398 398 398 398
AIC 881.0 803.7 802.4 805.1 807.6 813.4 800.8 803.4
BIC 885.0 811.7 810.3 813.1 815.6 821.4 808.8 811.4

5.3 Example II1: Medical Vaccine Data

The data in this example was analyzed in Phang and Loh (2014) and relate to
vaccine adverse event count, where 4020 observed systemic adverse events for
four injections administered to each of the 1005 study participants tabulated by
the number of such adverse events occurrences. The data is presented in Table

5.

Table 5: Parameter Estimates for the Injection Study Data

Eight Probability Models

Y count P NB GP GPL __ ATPPSD BT PIG DW

0 1437 890.757  1409.083  1389.968  1418.119  1427.031  1444.0324 13504344  1410.5098

1 1010 1342340 1068.653  1098.740  1054.743  1032.794  948.7219 11543773  1065.5600

2 660 1011.430 670.653 675.746 668.470 669.739 7054562  689.1260  667.8474

3 428 508.063 391.633 384.9°9 394.624 402444 4359538 3742808  393.1594

4 236 191.408 220.157 213.068 223233 208924 2441122 200.6188  222.6488

5 122 57.689 120.881 116.677 122.648 124.989 127.2175 108.9210  122.5773

6 62 14.489 65.318 63.695 65.953 66.113 62.5125 60.2918 65.9953

7 34 3.119 34.887 34.786 34.883 34.102 29.2413 34.0243 34.8803

8 14 0.588 18.471 19.038 18.208 17.234 13.1161 19.5363 18.1452

9 8 0.098 9.712 10.449 9.402 8.564 5.6727 11.3871 9.3090

10 4 0.015 5.078 5.753 4811 4.195 23758 6.7233 4.7169

11 4 0.002 2.643 3.178 2.443 2.030 0.9668 4.0138 2.3634

12 1 0.000 1.371 1.761 1.233 0.972 0.3834 2.4192 1.1721

Y <wya 12 34 32 33 28 27 45 29

Parameter A=15070 p=04967 p=1.5070 &=1.2946 &=1.3501  &=0.8302  [=1.5070  G=0.6491

Estimates 7=1.5268  #=0.2780  6=1.1654  6=1.4015  6=0.7914  B=1.0539  [=1.1470
m 1.5070
o? 2.9034

7 1.5070 1.5070 15070 1.5072 1.5071 1.5070 1.5070 1.5065

52 1.5070 2.9944 3.0343 2.9835 2.9382 2.7580 3.0952 2.9661

X2 > 1500.0 11.069 19.704 8.427 3.909 17.7870 48.5101 10.7392

d.f. 6 10 10 10 9 9 10 10

p-value 0.0000 0.3522 0.0322 0.5872 0.9173 0.0377 0.0000 0.3782

X2, 7743.22 3896.91 3845.62 5600.52 3971.39 4230.87 3769.99 3934.05

AIC 14464 13485 13496 13482 13478 13488 13.525 13,483

BIC 14471 13498 ‘13508 13495 13491 13500 13,537 13,496

The observed mean and variance for this data set are 1.5070 and 2.9034 respec-
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tively. In this example, we see that the ATPPSD model is the most parsimonious.
The reason is that both its means and variances are very close to the observed
values for the data. The ATPPSD is closely followed by the GPL model. Again
(apart from the Poisson) none of the models have their cumulative probabilities
and expected values summing to 1.00 and n = 4020 respectively within the data
range 0 < Y < 12. The values of Y, where these sums add to the appropriate
values are presented as y,, where for instance, for the ATPPSD, this would be
yq = 28, which is well outside the range of Y. Consequently again, the X 3 are
computed with the last category being adjusted as is often the case. All the ex-
pected values here satisfy the Lawal (1980) rule for the application of the 2
distribution.

In terms of the Wald’s test statistic, the most parsimonious model would be the

PIG model. This is not unexpected as it has the largest estimated variance of
3.0952.

5.4 Example IV: Accident Data

This example is presented in Greenwood and Yule (1920). The data in Table 6
provides the frequency distribution of number of accidents among 647 machine
operators in a fixed period. The percentage of zeros in the observed data is
69.1% while the corresponding percentage under the Poisson model is 62.8%.
Thus, the data has excess zeros. In Table 6 are the results of applications of
these distributions to this data set.

Table 6: Distribution of Number of accidents among machine operators

Y Count P NB GP GPL ATPP BT PIG DW
0 447 406.3125 445.8864 445.1728 446.3985 442.1930 446.7131 443.3309 445.5437
1 132 189.0263 134.8957 136.7721 133.7239 139.3642 129.3145 141.1393 135.3634
2 42 43.9698 43.9920 43.0768 44.4548 44.4708 49.3925 41.2279 43.9955
3 21 6.8186 14.6924 14.2714 14.9354 14.2603 15.5372 13.3448 14.6194
4 3 0.7930 4.9647 4.9260 5.0017 4.5722 4.4489 4.7829 4.9247
5 2 0.0738 1.6893 1.7548 1.6652 1.4611 1.1940 1.8478 1.6753
Total 647 646.9939 646.1205 645.9739 646.1795 646.3216 646.6003 645.6737 646.1221

£=0.4652  p=0.3497  [=0.4652  &4=0.7364  &4=0.3004 &=0.4744  [1=0.4652 G=0.3114
7=0.8651 7=0.5251 6=2.2446 0=2.6571 6=0.6102  B=0.5677  (3=0.9673

1 0.4652

o2 0.6919
g 0.4652 0.4652 0.4652 0.4654 0.4653 0.4652 0.4652 0.4653
52 0.4652 0.7154 0.7203 0.7150 0.6861 0.6859 0.7293 0.7136
X7 70.3711 3.9091 43456 3.5172 43136 3.6585 6.1269 3.8357
df. 3 3 3 3 3 3 3 3
p-value 0.0000 0.2714 0.2265 0.3185 0.2295 0.3008 0.1056 0.2798
X3 960.8 624.8 620.52 625.11 651.43 651.61 612.84 626.34
df. 645 644 644 644 644 644 644 644
AIC 1236.4 1188.5 1189.2 1188.3 1188.8 1188.0 1191.1 1188.6
BIC 1240.8 1197.5 1198.1 1197.2 1197.7 1196.0 1200.0 1197.5

For this data set, the GPL model is the most parsimonious model based on the
grouped Pearson’s X 92 of 3.5172 on 3 d.f. (pvalue=0.3185). However, based on
AIC and BIC selection criteria, the chosen model would be the Bell-Touchard
distribution. On the other hand, is parsimony is based on Wald’s Test statis-
tics, the PIG model (with over estmated variance of the data) will be chosen. In
such competing selection situations, selection will be based on the fitted values
of the model which are reflected in the Pearson’s X2 goodness-of-fit statistic.
Kokonendji and Malouche (2008) has employed the Hinde-Demétrio distribu-
tion HD>(q,0) to the data. This distribution belongs to the class of discrete
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exponential dispersion model (EDM) and is defined as:

Lawal

fy;p;0,0) = cy; p;o) exp{Oy — o K, (0)},y € Sp (25)
where 6 € ©,, C R is the canonical parameter, o > 0 is the scale parameter and
c(y; p; ) is the normalizing constant and K () is the cumulant function. The
EDM is characterized by the unit variance function:
Vy(p) =p+p?, pe{0}U]l,c0)

where > —1 for p = 0 and p > 0 for p > 1. When the H D(q, 0) was applied
to the above data, the model gives a X? = 4.318 on 2 d.f. and was considered
then, the most parsimonious of the Hinde-Demétrio family of distributions. Re-
sults in Table 6 indicate that with the exception of the Poisson and the PIG, all

the other models perform better than the Kokonendji and Malouche H D2 (q, 0)
model.

5.5 Example V: Death Notices

This example data is presented in Table 7 and gives the number of death notices
of women 80 years of age and older, as it appeared in the London Times on each
day for three consecutive years. The data was analyzed in Hasselblad (1969) and
recently re-analyzed in Gupta et al. (2014) and Lawal (2021). The data has an
observed mean and variance ;i = 2.1569 and 0 = 2.6073 respectively with a
dispersion index of 1.2088-indicating moderate over-dispersion in the data.

Table 7: Models for the frequency counts of Death Notices

Y Count P NB GP GPL ATPPSD BT PIG DW
0 162 126.7844 155.6940 155.0261 155.7159 236.2784 158.1816 153.3423 156.5517
1 267 2734657 2757962 2762127  275.788l 2643793 273.6696  277.1488  278.4826
2 271 2949237 2689208  269.5270  268.9012 2137483 2669110  271.0949  263.1223
3 185 212.0437 190.8337 190.9293 190.8257 149.6387 190.9472 191.2643 189.3131
4 111 114.3411 110.0932 109.8851 110.0958 96.3236 111.0463 109.4029 112.2854
5 61 49.3252 54.7464 54.5505 54.7517 58.6418 55.4136 54.0498 56.8184
6 27 17.7319 243175 24.2301 243212 34.3005 24.5234 23.9868 25.0037
7 8 5.4638 9.8794 9.8671 9.8811 19.4650 9.8396 9.8174 9.6881
8 3 1.4731 3.7327 3.7477 3.7332 10.7870 3.6360 3.7751 3.3342
9 1 0.3530 1.3277 1.3445 1.3278 5.8645 1.2520 1.3824 1.0259
Total 1096 10950057 10953416 10953198 10953418  1089.4271 10954203 10952647  1095.6254
(1096) 1096 (1096) (1096) (1096) 22 20 18
[=2.1569  p=0.1787  [=2.1569  &=9.8725  &=2000.00  &=0.2205  [i=2.1569  ¢=0.8572
7=9.9104  #=0.0477  6=4.6590 f=12111  6=7.8459  [B=02121  B=1.7142
w 2.1569
o? 2.6073
g 2.1569 2.1569 2.1569 2.1569 2.1653 2.1569 2.1569 2.1565
52 2.1569 2.6264 2.6233 2.6266 4.1138 2.6326 2.6144 2.6152
X2 26.9746 2.7390 2.9247 2.7350 73.8447 2.1487 3.4467 1.9212
df. 8 7 7 7 7 7 7 7
p-value 0.0007 0.9081 0.8919 0.9084 0.0000 0.9512 0.8408 0.9641
X2, 1323.641 1087.051 1088.325 1086.959 694.031 1084.499 1092.023 1091.707
df. 1094 1093 1093 1093 1093 1093 1093 1093
AIC 3985.0 3986.4 3984.6
BIC 3995.0 3996.4 3994.6

The ATPPSD fits poorly here but the BT fits very well. However, the most
parsimonious model here being the DW. The GPL,GPL. NB and GP are also
suitable candidates. Notice the ratio of the parameters for the ATPPSD model
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here: 2000/1.2111 = 1615.39. The ATPPSD grossly over estimates the variance
of the observed data.

6. Zero-Inflated ATPPSD, GPL and BT

The ATPPSD and BT tend to perform poorly for data sets having more than 80%
of their observations being zeros. We therefore, consider zero-inflated GPL,
ATPPSD and BT models in this section. Zero-inflated models for the NB, GP
and P have been exhaustively considered in various literature. The zero-inflated
(ZI) model is a two-part process manifested by the structural zeros part and the
process that generates random counts and can be written for a pmf f(y),y =
0,1,...1n the form:

¢+ (1-¢)f(0), fory=0
(1_¢)f(y)7 fory:1,2,...
where ¢ is the extra proportion of zeros, such that 0 < ¢ < 1 and Y 1s the count

random variable with specified parameters. ¢ is modeled here in the logit form.
Specifically, the ZI-NGPSD probability mass function becomes,

fylo,¢) = { (26)

b+ (1-0) 1) ity =0
a,0,0) = 27
e ) {(1¢)f(y) ity >0 =0

where f(y) on the RHS of (27) is the probability mass functions in (3) and
f(0) = P(Y = 0) such that,

P(Y:O):[ 0 ”04(9+3)+(02+20+1)

02 + ab + 2 (0 +1)3

a2 + )9+l

L'(1+ a)(1+60)at?’
the BT distribution, f(0) = ?1=¢") These are the expressions for the zero-part
of the likelihood in (26).

Implementing the ZI-GPL, ZI-ATPPSD, ZI-BT and the ZIPIG models for the
data set in Table 8 and the results therein. The data set in Table 8, is the dis-
tribution of one of the response variables HOSP=the number of days stayed in
hospital from the NMES (The US National Medical Expenditure Survey 1987
and 1988). The data has previously been analyzed in Deb and Trivedi (200/) and
recently by Lie et al. (2011) and Wogrin and Bodhisuwan (2017). Here, Y] is the
number of hospital stays and count is the frequency in each category. The sam-
ple size here is n = 4406. The data have a sample mean y = 0.2960 and sample
variance s> = 0.5571 and consequently a dispersion parameter of 1.88 which
clearly indicates over-dispersion. Also the data has excess zeros with 80.4% of
the data having zeros.

while for

Similarly, for the GPL, f(0) is given by: f(0) =
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Table 8: Parameter Estimates and Expected values under the various Models

Regular Models Zero-Inflated Models
Y count GPL ATPPSD BT PIG DW ZIGPL _ ZIATPPSD ZIBT ZIPIG
0 3541 3540.8016  3401.1094  3533.7148 35364538  3544.7244 | 3541.0087  3541.0000  3541.0000  3541.0000
1 599 579.8887  773.6037  562.9048 6184163  587.1748 579.6051 574.6805  556.5355  601.4059
2 176 186.8588 177.6970  219.1836 154.7011 174.5332 186.8543 192.1207  213.9888 165.8911
3 48 64.1171 41.1165 66.1548 5.4985 60.4913 64.1502 64.7890 67.8342 56.6547
4 20 223272 9.5622 17.9181 22.1577 22.8960 223520 21.9958 19.5687 22.4181
5 12 7.8065 2.2309 4.6175 10.1774 9.2037 7.8195 7.5041 5.2879 9.7342
6 5 2.7316 0.5213 1.1478 4.8908 3.8699 2.7376 2.5686 1.3536 4.4938
7 1 0.9555 0.1219 0.2757 2.5598 1.6860 0.9580 0.8809 0.3309 2.1655
8 4 0.3340 0.0285 0.0642 1.3565 0.7562 0.3350 0.3024 0.0778 1.0769
ML &=02210  &=0.1940  &=0.6195  4=0.2960  §=0.1955 | &=0.2321 &4=0.0784  6=04733  [1=0.3952
Estimates f=19109  6=3.7126  6=02572  [=0.9322  [(3=0.7667 | 6=1.9124 6=2.1851 0=0.6247  [3=0.7797
$=0.0181 $=0.4093  $=0.3765  $=0.2511
AIC 6030.2 61347 6066.6 6020.5 6020.9 6032.2 6035.0 6063.4 6020.5
BIC 6043.0 6147.5 6079.4 6033.3 6033.7 6051.4 6054.2 6082.6 6039.7
w 0.2960
o? 0.5571
7 0.2955 0.2964 0.2960 0.2960 0.2957 0.2955 0.2960 0.2960 0.2960
52 0.5118 0.3866 0.4793 0.5719 0.5397 0.5121 0.5105 0.4889 0.5561
X2 479470 4612.12 5120.15 4291.41 4546.80 4792.23 4807.47 3509.15 4413.00
d.f. 4403 4403 4403 4403 4403 4402 4402 4402 4402
X2 18.1839 >100.00 75.7546 5.8997 9.2790 18.1470 19.0920 62.1234 4.8101
d.f. 5 4 3 6 6 4 3 2 5
p-value 0.0027 0.0000 0.0000 0.4345 0.1585 0.0012 0.0003 0.0000 0.4395

Results from the left panel in Table 8 indicate that the PIG and DW models
fit the data well, with the PIG being the most parsimonious model. The other
regular models fit poorly, although the GPL performs slightly better than the
BT and ATPPSD. The reason for this is that both ATPPSD and BT grossly
underestimate the observed variance of the data. These estimates being 0.3866
and 0.4793 respectively. However, the GPL gives a slightly higher estimate of
the variance - being 0.5118, which is closer to the true variance than the other
two, while PIG and DW provide estimated variances that are even much closer
to the observed variance in the data.

For the zero-inflated versions of the models on the right panel, results indicate
that the estimated inflation parameter for the ZI-GPL is not significant and there
is therefore no improvement on the ZI-GPL relative to its regular version. On
the other hand, the ZI-ATPPSD and ZI-BT have significant estimated parame-
ter ¢ and consequently gives improved performances over the regular models
but these improvements are not significant enough for the models to provide
adequate fits to the data. The variance estimates are higher but not sufficiently
higher enough to provide parsimonious models. The most parsimonious model
here is the ZIPIG. On both panels, all the models correctly estimated the ob-
served mean of the data.

The estimated zero-inflated means and variances are computed from the expres-
sions in the table below:

fizr | (L=
o7, | (1= ¢)(0® + op?)

where the p for ATPPSD, BT and GPL are given respectively in (4a), (9a) and
(13a). Similarly, the o2 for the ATPPSD, BT and GPL are given in (5), (9b) and
(14) respectively.
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7. GLM Applications of the Models

In this section, we consider the applications of the above models to data having
covariates or explanatory variables. Two data sets that have received consid-
erable attention in the literature are considered: The doctor visits data in the
United States and the doctor’s visits from the German health Registry. The data
and results are presented in the following sections.

7.1 Doctor visits from United States

These data consist of 485 observations with the response variable being the
number of doctor visits and is from the United States in the year 1986. The
explanatory variables are:the number of children in the household, a measure of
access to healthcare and a measure of health status (larger positive numbers are
associated with poorer health). The response variable, has approximately 50%
of zeros, and thus it can be considered as zero excessive data. The response
variable has a sample mean of 1.6103 and sample variance of 11.2011, giving us
a dispersion index (DI) of 6.9559 > 1. Thus the data is strongly over-dispersed.
These data are available from the Ecdat R package, under the name Doctor. The
results of implementing some of the models discussed in the previous sections
and their zero-inflated versions are presented in Table 9.

Table 9: MLE and GOF Statistics for the Various Models

Parameters Regular Zero-Inflated

GPL BT PIG DW ZIGPL ZIBT ZIPIG
Intercept -1.9322%*% 0.4687**  0.4091%* 0.1125 -1.3906%  0.4499**  0.4694*
Children -0.3676  -0.0649**  -0.1019  -0.1385** -0.2971  -0.0662**  -0.1062*
access 2.3888%  0.3463%** 0.5230 0.4624 1.9364*  0.3514**  0.5499
health 0.5099**  0.0974**  0.2656**  0.2769** 0.4512** 0.0980**  0.2699%**
0 0.5705**  0.1808** 0.5831**  0.1963%**
B 4.4284%*  (.7824** 4.0689**
0] 0.1993*  0.6106*%*  0.6152%*%*
AIC 1609.5 1647.8 1572.5 1576.7 1609.1 1649.6 1573.7
BIC 1630.4 1668.7 1593.4 1597.7 1634.2 1674.8 1598.8
X2z 716.7748  871.2928  438.0371  588.2812 | 686.4500  853.5290 456.0429
d.g/.v 480 480 480 480 479 479 479

* Significant at 0.05,  ** Significant at 0.01.

Among the regular models the most parsimonious model is the PIG. It has a
Wald’s GOF of 438.0371 on 480 d.f. This is closely followed by the DW with
a Wald’s X? of 588.2812 on 480 d.f with an ID of 1.2256. This ID should not
be confused with that presented in Kalktawi et al. (2018) which is 4.9397 (this
is based on the ratio of estimated variance and mean for the response variable
under the DW model, viz: 7.8735/1.5933). Actually, the ID should be 1.4256:
see - Table 11. The GPL, BT underestimate the variances of some of the 485
observations. Ditto for the DW but to a lesser extent. Also presented are the
corresponding zero-inflated models for the GPL, BT and PIG. The means and
variances of the zero inflated models are obtained as:

pait = (1= @)y, and  oZy = (1-9¢)lo” + op’]
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where for the BT, GPL and PIG, the o2 are given in (9b), (14) and (18) respec-
tively. Results from the zero-inflated panel also indicate that while there are
small improvements with the ZIGPL and ZIBT over their regular counterparts,
the ZIPIG does not give any improvement over its regular counterpart. The little
gains from the AIC values are negated with their corresponding BIC values as
a result of the estimation of the additional parameter ¢ for the ZI models. The

zero inflated ZIDW model always returns a ¢ ~ 0.0000, indicating that the ZI
for the DW is not effective as its parameter g is already directly linked to the
zeros 1n the data set.

7.2 Doctor visits from Germany prior to health reform data

Our second example of data having covariates is the data set from the German
health registry(GHR) for the years 1984-1988. It provides information for the
years prior to health reform. The data has 27,326 observations and the four
variables: number of visits to doctor during a year (which ranges from 0 to 121),
age (which ranges from 25 to 64), years of formal education (spanning from 7
to 18) and household yearly income (in DM/1000). The data has a sample mean
of 31,835 and a corresponding variance o 32.3726, thus a DI of 10.1689 >> 1.
The data is therefore over-dispersed. The respond variable has 37.1% of its
observation zeros. Under the Poisson, the expected number of zeros, would be
100 exp(—3.1835)=4.14%. Thus this data display excess zeros and we would
explore zero-inflated models for this data set. This dataset is available in the R
package COUNT under the name rwm.

Table 10: MLE and GOF or various Model-German (GHR) Data

Parameters Regular Zero-Inflated

GPL BT PIG DW DW;; ZIGPL ZIBT ZIPIG
Intercept -8.2824** 0.644%* 0.7199%* 0.2973%* -0.5861+* -6.0479%* 0.9019%* 0.99727%*
age 0.14007%* 0.0064** 0.0189%* 0.0178** -0.0141%* 0.1080%* 0.0057%* 0.0183**
educ -0.054%+* -0.017%* -0.0298%*  -0.0363** 0.0288%* -0.0796**  -0.0119%*  -0.0302%*
income -0.1536%*  -0.0140**  -0.0217**  -0.0355%* 0.0276%* -0.1134%%  -0.0149%*  -0.0262%*
[4 0.2767%* 0.0681%* 0.2715%* 0.0935%*
B 9.7732%%* 0.7360%* 0.7359%* 6.6074%*
é 0.0026* 0.7113%* 0.7305%*
AIC 121,905 128,669 121,121 120,327 120,335 121,725 128,545 119,987
BIC 121,946 128,710 121,162 120,368 120,376 121,774 128,595 120,037
Xev 50,373 67,214 23,960 33,805 33,759 46,921 63,793 30,481
d.f. 27,321 27,321 27,321 27,321 27,321 27,320 27,320 27,320

* Significant at 0.05,  ** Significant at 0.01.

The results of these implementations are presented in Table 10. Results here
indicate that for ‘regular’ models, the PIG is the most parsimonious model. Both
DW and DW;, with parameter q formulated in the logit form in the former and
in the log-log form in the latter. The parameter estimates under the latter agree
with those presented in Kalktawi et al. (2018). Both give about the same AIC,
BIC and Wald’s GOF. The zero-truncated models indicate slight improvements
over their 'regula’ counterparts. The ZIPIG is the most parsimonious here and
its variances and means are estimated lower (and closer) as illustrated in Table
11.

In Table 11 are estimated means, variances, Wald’s GOF and the corresponding
estimated dispersion indices for the models listed for the response variables
(only) for the USA (doctors visits) and the GHR (docvis).
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Table 11: Summary Statistics for all Models Applied to both Covariate Data

sets

Model
P

‘ USA Data ‘ Gegman Data
J s° X? DI Uy s° X? DI

. . . . . . 77,861. .
NB  1.6103 7.5048 7223878 1.4925 | 3.1835 23.9805 36,887.5333  1.3500
GP  1.6103 8.6984 623.2592 1.2904 | 3

1835 29.7315  29,752.2959  1.0889

GPL 1.6087 6.1179  886.1516 1.8347 | 3.1783 18.3592 48,181.9055 1.7634
BT 1.6103 4.6015 1178.1794 2.4393 | 3.1835 12.3291 71,747.2896  2.6258
PIG  1.6103 10.4527 518.6565 1.0738 | 3.1835 36.5062 24,230.9389  0.8868
DW  1.5933 7.8735 688.5702 1.4256 | 3.1630 259332 34,1104199  1.2484
ZIPIG 1.6103 9.4153  575.8034 1.1921 | 3.1835 27.6963 31,938.5401  1.1689

Data 1.6103 11.2011 3.1835 32.3726

Clearly here:
(1) For the USA Data:

Most of the models estimate the mean of the response variable about
right (exceptions being the GPL and DW)

The variance of the response variable is grossly underestimated,
however,the PIG with estimated s2=10.4527 being about the clos-
est to the observed variance of 11.2011 in the data.

The PIG is clearly the most parsimonious here with ID of 1.0738.
The ID of 4.9377 reported in Kalktawi et al. (2018) is the ratio
7.8735/1.5933 under the DW model.

(2) For the German Health Data:

Here too, the observed mean of 3.1835 is well estimated by all mod-
els except GPL and DW.

The generalized Poisson model gives the most parsimonious model,
although this model is not considered in our results in Tables ?? and
29

The PIG gives a dispersion index of 0.8868 < 1 for this data set.
This is because the variance is overestimated and thus reduces the
Wald’s X?2. Consequently, because the data has excess zeros, its
zero-inflated version-ZIPIG produces a slightly modified estimate
of variance and a dispersion index that is much closer to 1.0. Thus
the zero-inflated model here will be better than the regular model.
The ID of 8.1987 in Kalktawi ez al. (2018) is the ratio of s2 /4y under
the DW model and far from the true index of dispersion under the
model of 1.2484, which is much comparable to GP, ZIPIG and NB
models.

8. Conclusion

Based on our results in this paper, the PIG and DW distributions will be suit-
able models for modeling over-dispersed data. In some cases,these distributions
would be much preferred than either the negative binomial (NB) or the gener-
alized Poisson. Not considered here are other two-parameter distributions, such
as the hyper-Poisson and the Com-Poisson which are also suitable for modeling
under-dispersed count data.

The ATPPSD in particular does not do well in most cases. It performs poorly
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if the ratio of its estimated parameter is >= 10. For example, in Shanker et al.
(2020), five data sets were studied. The ratios of these estimated parameters for
Tables 1 to 5 in their paper are 1439, 3.328, 8.845. 4.5021 and 3.059 respec-
tively. The ATPPSD fits all except the data in Table 1 of their paper, which has
a ratio of 1439 > 10. It also does poorly for data exhibiting excess zeros.

The ATPPSD however, provides another alternative in the suite of models for
fitting over and under-dispersed data sets. While it might not be suitable for all
data sets, it might perform better than existing models in data sets such as the
one in data sets in which the ratio of its estimated parameters is < 10 such as
the data in Table 1.
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