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1. Introduction

Popularization and extensive research of linear time series modeling began in
1927 with Yule’s Autoregressive models, used in studying sunspot numbers.
In the decades that followed, these models have been successfully applied in
different fields because as far as one-step ahead prediction is concerned, linear
time series models are often adequate. However, this is not so as can be seen
from the Canadian lynx data. The causes of this are mentioned later herein.

Nonlinear time series analysis gained attention in the 1970’s. The interest grew
due to the need to model nonlinear changes in everyday time series data ex-
hibiting non-linearity. Autoregressive Integrated Moving Average (ARIMA)
models cannot describe adequately limit cycles, time-irreversibility, amplitude-
frequency dependency and jump phenomena (the Canadian lynx data mentioned
earlier i1s a good example). As a result, Tong (1978) came up with a proce-
dure for modeling nonlinear changes in time series data in which different Au-
toregressive (AR) processes are functioning, and the switch between these AR
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models depends on the delay parameter and threshold value(s), which has cer-
tain time lag values from the given time series. Tong and Lim (1980) and Tong
(1983) followed up the work with an extensive description of the procedure.
Tsay (1989) proposed a much simpler procedure. He noted that the Tong’s pro-
cedure is not statistically adequate for formally determining if a given data can
be described using a threshold model.

Several nonlinear time series models have been proposed over the years includ-
ing the Threshold Autoregressive (TAR) models. This involves a piece-wise
linearization of nonlinear models over the state space by the introduction of the
thresholds {r, ...r;.}. TAR models has been of significant interest because of its
ability to model nonlinear data adequately. Common notion were employed by
Priestly (1965), and Ozaki and Tong (1975) in the analysis of non-stationary
time series and time dependent systems. They used local stationarity as the
counterpart of our present local linearity. The overall process is nonlinear when
there are at least two regimes with different parameters and/or process order.
Tong and Lim (1980) proposed the requirements for modeling of nonlinear time
series. Asikgil (2018) used five different SETAR models to generate the auto-
correlated disturbances in a multiple regression study. In a recent work by Yang
et al (2018), they used empirical likelihood method to analyze the SETINAR
models which captured the various characteristics of time series of counts.
Hamdi and Khalfi (2019) used a variant of the predictive Density criterion
(PDC) for joint determination of the delay parameter and autoregressive orders
of the SETAR models. The result was shown to be very effective. Blasques et
al. (2019) introduced a new class of nonlinear autoregressive models from their
representation as linear autoregressive models with time-varying coefficients.
Using some illustration, they compared the dynamic properties of the new
model with those of well-known nonlinear dynamic models such as the thresh-
old and smooth transition autoregressive models and found it to perform better.
Guris and Guris (2019) proposed a new unit root test against ESTAR model
based on a class of modified statistics by applying the GLS detrending method
for the unit root test procedure. Siu and Elliot (2020) adopted a nonlinear time
series model for modeling Bitcoin return dynamics. The approach involved
combining both the self-exciting threshold autoregressive (SETAR) model and
the generalized autoregressive conditional heteroscedastic (GARCH) model.
Liu and Zhang (2020) obtained the law of the iterated logarithm for error density
estimators in first-order autoregressive models and threshold models as corol-
laries.

Predictive ability in time series indicates the degree to which the past can be
used in ascertaining the future. This is a fundamental measurement in time se-
ries analysis. Assessing whether there is predictability among macroeconomic
variables has always been a central issue for applied researchers. For example,
much effort has been devoted to analyzing whether money has predictive con-
tent for output. This question has been addressed by using both simple linear
Granger Causality (GC) tests (Stock and Watson, 1989) as well as tests that
allow for non-linear predictive relationships (Amato and Swanson, 2001 and
Stock and Watson, 1999). Several authors have studied this measure and pro-
posed extensions to it in several fields, for instance tourism and finance. How-
ever, not much has been done to investigate whether more than one series have
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equal predictive ability. Testing whether the models provide similar forecast
performance represents a test of equal predictive ability. Examining equal pre-
dictive ability 1s essential in risk management. Furthermore, it could be interest-
ing to establish if time series which have the same variables (economic, climate,
etc), recorded in different spatial areas or calculated with different methodolo-
gies, have equal predictive abilities.

The issue of equivalence have not been thoroughly addressed, yet there are
many instances in practice where it is necessary. For instance, the task of fore-
casting demand for common items in different markets maybe facilitated if it
can be shown that the models characterizing demand are equivalent in the var-
ious market. As an extension of this application on a broader scale, the equiv-
alence of economic indicator series in separate geographic areas could suggest
that the economic condition are common in the studied regions, (Steece and
Wood, 1985).

Steece and Wood (1985) introduced a simple method for assessing the equiv-
alence of k time series when the series are not necessarily independent. By
equivalence, the k series exhibit parallelism and concurrence. They introduced
a test of equivalence which can be easily computed from information routinely
reported by software packages and can be easily interpreted.

Triacca (2004) analyzed the relationship between a measure of dissimilarity
between ARIMA models and a condition of parallelism of two ARIMA pro-
cesses. Otranto (2004) extended well known results developed for the ARIMA
models to GARCH models by considering financial time series characterized
by similar volatility structures. The argument being that the selection of series
having similar behavior could be important for the analysis of the transmission
mechanisms of volatility and to forecast the time series, using the series with
more similar structure. Otranto and Triacca (2007) used a measure of predictive
ability of a time series following a stationary Autoregressive Moving Average
(ARMA) process to develop a test of equal predictive ability of two series. The
test is derived by a set of propositions which links the structure of the AR and
MA coefficients to the predictability measure.

This work presents a test of equal predictive ability and its relationship with
parallelism in Self-Exciting Threshold Autoregressive (SETAR) model. Three
illustrative examples using Wolf yearly sunspot numbers,Abuja Ozone deple-
tion data and simulated data are presented. It is organized as follows; section 2
discusses materials and method; section 3 presented the results and discussions
of the numerical examples. The conclusion is presented in section 4.

2. Materials and Method

The R? statistic is a measure of the proportion of the total variation in the data
that is explained by the time series model. It can be stated in the context of the
self-exciting autoregressive (SETAR) time series models as one minus the ratio
of the residual variance to the total variance of the time series. It makes avail-
able a measure of the relative predictive ability of a time series given its past
history. Its understanding in the time series context gains much from the simi-
larity to linear regression. However, the special character of time-series models
offers the opportunity of additional insight which can be of considerable value
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in actual data analysis. R? can be related to the underlying parameters of a time
series and to its autocorrelation structure, which shall be presented shortly.

2.1 R? Defined for SETAR Time Series Models

We are interested in time series {Z;} which have a self-exciting threshold au-
toregressive (SETAR) representation of the form

. p . . .
Zt = Cb‘(]) + ,Zlcb{Zt_z' =+ 6}? ifrj < Zy_g<ry, (D
1=

where cbg, 1 = 1,2,3,...,pand j = 1,2,3,...,k are fixed parameters for dif-
ferent regime satisfying conditions for stationarity and e, are a sequence of

uncorrelated random variables with common variance 062 Y ). The fraction of the

variation in Z, V(Z)’ which cannot be predicted is therefore

»20)

1-R2= "%
V(Z)(J)

and fraction that can be predicted is define as

For a series which cannot be forecasted, such as white noise, this ratio is equal
to zero. If the series can be forecasted without error, the ratio 1s 1. The interpre-
tation of R? gives extra meaning when it can be associated with the parameters
of the time series and to its autocorrelation. This tool can be very useful at the
identification stage when it is the desire of an analyst to assess the predictive

ability of a time series. Theoretical R? can be associated with the coefficients
and autocorrelation coefficients in the following way. Denoting the autocovari-

ances of the process by 77 , the variance of Z; is given by

V(Z)D = B(Z3)Y = ¢l + .. + ¢l + o2

We then have R20U) to be

»
|2 _ 06(])
P V(Z)W)
=1— 1o — - — )
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R]%(j) :¢{p{ + ...+ @@p%

=10 @
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where ﬁ’% denote the column vector (p7, ... ,0%) and Qf} is ( {, ¢i,)
Yule-Walker equations are given by,

where r}j ) is the correlation matrix for (Zt-1,...., Zt—p). Using Equation (3),

80 = [rﬂ ! )

we can then obtain Rg(j Jas

Preposition:

Let {Y;;t =0,%£1,...} and {Z;;t =0,%1,...} be two SETAR processes. The
processes {Y;;t = 0,+1,...} and {Z;;t = 0, £1, ...} have equal predictive ability
if

g — gl —
Bp ?py Bq qZ_O

Proof:
If {Y;;t =0,+1,...}and {Z;;t = 0, %1, ...} have equal predictive ability, then

R20) _ p20)

pY — T qZ
1 )i —
Ly Opy =Ly G4z =0
P{ijn/ + P%Cbéy ot pzj) éY = P{Cb{z - P‘;Q%Z e Pégbzz

These measures are the same if
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(bly pZ !, =0,1=1,...,p,q for each i.

Hence,
J 4J J 4J Jo ] J 1] J 1] PV
P1P1y + Pabay T -+ Py Oy — P11y — Mooy — -~ PPy
(J) j ) .3
Plyy Ppy — p/qz— qZ — 0

2.2 Parallelism and Predictive Ability
Let {Y;;t =0,£1,...} and {Z;;t = 0, £1, ...} be two SETAR processes.

| i
& (B)Yi =l el ~ WN (0,0])

| §
o (B) % = e ¢, ~ WN (0,07

where gb{, (L) and gij (L) are finite in L of degree PY and PZ respectively.

If {V;;¢=0,%1,...} and {Z;;¢t = 0,£1, ...} are parallel then ¢3, (L) = ¢7, (L).
This definition is given in Steeco and Wood (1985), Guo(1999) and Otranto and
Triacca (2007) for the case of AR models.

Lemma:

Let {Y;;t=0,£1,...} and {Z;;t=0,=£1,...} be two SETAR processes. If
{Yy;t =0,£1,...} and {Z;t = 0, %1, ...} are parallel then they have equal pre-
dictive ability

Proof:

If {Y;;t =0,%£1,...} and {Z;;t = 0,+1, ...} are parallel then

Yoy (L) = ¢ = = ¢ (L) Z

with ¢}, (L) # 0 and ¢, (L) # 0 for |L| < 1
j . . . .
¢>§€L) = <1+¢{yL+wgyL2+...) e = (1+w L4l L%+ )eg = ].Zt =7

From the LHS, we obtain
J

. o | |
%L»:O+¢L+WL2 e O] (R AR WA S B C)

Y =
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(1— L—¢h [?— )(1+¢ L+ L%+ ):1

1+¢ L+¢] L* + ¢{yL—¢ d)J L* - %y¢‘7 L3 - d)J L* - ¢] LP—..=1(6)
and from RHS

(1+¢{2L+w52L2+...> e = —"1— = gL )(1+¢{ZL+¢52L2+---> =

(1-elb-ab =) (1ol L+ul1?+.) =1

1+¢{ZL+¢52L2+'"_¢{2L_w{z¢{zL2_¢gz {ng _¢%2L2 %zL?’ (:7)
For the model of order p, we obtain
' J o] VN J
}791/ ir]w Ly"p—ly  P2y7p-2y p Lyw Ly (8)
p—1
Y
N Z Py Vi ©)
i=1
W, = el forl>p (10)
i=1
The same applies for Z process as follows
Gpe=Upo— 01V — Uy o, — Oy U (11)
he = Vs — Z Oy (12)
Zgb i mforl>p (13)

equating Equations (7) and (10) we have,

pny Z¢ wi) LYy - J Zgbgzwg) 1,2 ¢J, (14)

From Equation (3)
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2.3 Testing for Equal Predictive Ability

The theoretical results of the previous section suggest the possibility of testing
the equal predictive ability of two SETAR processes. Verifying the hypothesis
of equal predictive ability is an important task in several fields. For example,
it could help to choose among several procedures of seasonal adjustment; it
could help in investment decisions and in establishing the different degrees of
predictive ability among several returns (Otranto and Triacca, 2007).

The above provides the way to confirm the equivalence of the equal predictive
ability and parallelism between two SETAR processes. The null hypothesis can
be expressed in terms of the parameters of the time series.

Hy: ¢}, = 0., (15)
The null hypothesis can be expressed as a set of linear restrictions:

A® =0 (16)
where © = ( {y, %y,...,(bf)y, 1B {y,...,(b]]oz) and A is a mxm matrix of

the form

Im —Im Op ... Oy Opy
ozn Jzn —:Im o:n Ofn an
Om Om Om oo Ty =1

with [,,, representing mxm identity matrix and 0,, an mxm matrix with ele-
ments equal to zero, m = p. The Wald test statistic for the null hypothesis is of
the form:

W=(A0)'(AAA")"1(AO)

where O is the maximum likelihood estimator of © whereas A is the maximum
likelihood estimator of the covariance matrix of © . W is asymptotically dis-
tributed as a central chi-square random variable with m degrees of freedom.

http://www.bjs-uniben.org/




9

Ugwuowo et al.

3. Results and Discussion

Example 1: Consider different transformations of the Wolf Yearly Sunspots
numbers collecte from 1700 - 2001. The series consists of 302 observations.
From Figure 1, we see that the plot of sunspot differs from the log. transform
and the reciprocal but it is considerably similar to the square root transform.
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Figure 1: Plot of square root, log., reciprocal and actual data of sunspot numbers

In Table 1 we present the summary of the estimated parameters(with standard
error in parenthesis) of the sunspot numbers and the logarithm, square root and
reciprocal transformations. Threshold values depict the point of change from
lower regime to upper regime. The measure of predictive ability R™{2} are
shown for the two regimes.

Table 1: Esimates of the parameter for sunspot numbers and other transformations

Sunspot Numbers log, Sunspot Numbers Sq.root Sunspot Numbers Reciprocal of Sunspot Numbers
SETAR(2:2,2).d=1 SETAR(2;2,2),d=1 SETAR(2;2,2).d=1 SETAR(2;2,2).d=1
Estimated threshold=100.1 | Estimated threshold=2.632 | Estimated threshold=3.317 Estimated threshold=0.125
Lower Regim Esimates t-value Esimates t-value Esimates t-value Esimates t-value
Intercept 13.358(1.729) 7723 1.098(0.319) 3.446 0.809(0.709) 1.144 0.0023(0.004) 0.608
lag 1 1.1591(0.053) 29.888 1.098(0.187) 5.837 1.439(0.326) 4.414 1.536(0.1) 1531
lad 2 -0.82(0.047) -17.578 | -0.371(0.138) -2.692 -0.469(0.176) -2.665 -0.252(0.039) -6.483
RSE 15.68 0.851 1.359 0.0016()
n 260 66 52 267
R- 0914 0.891 0.877 0.665
Upper Regim
Intercept -9.985(15.86) -0.63 0.132(0.137) 0.963 1.599(0.223) 7.164 0.083(0.071) 1.179
lag 1 1.247(0.125) 9.938 1.617(0.047) 33.26 1.471(0.044) 33.613 0.843(0.208) 4.045
lad 2 -0.356(0.081) -4.37 -0.7(0.036) -19.262 -0.732(0.04) -18.124 -0.425(0.197) -2.155
RSE 16.958 0.333 1.099 0.249
n 40 234 248 33
R- 0.979 0.993 0.979 0.635

http://www.bjs-uniben.org/




On Equal Predictive Ability and Parallelism... 10

The different models from Table 1 are given below;
The sunspots numbers,

L, _ [13:358 4+ 159121 — 0,822 521 < 100.1
7)1 —9.985 + 1.2472_1 — 0.35624_1, 2t—1 > 100.1

The log,. of sunspots numbers,

L _ J1.098+1.0892 1 — 037z, 21 < 2.632
P700.132 + 1.617201 — 0.7322—9, 241 > 2.632

The square root of sunspots numbers,

L _ J0.809+1.4392 1 — 046971, 21 < 3.317
P71 1.599 + 1.471201 — 0.73224_9, 241 > 3.317

The reciprocal of sunspots numbers,

L, _ J0.0023 4 1.53621 — 0.25222 21 < 0.125
£700.083 4 0.8432,_1 — 0.4252;_9, 2,1 > 0.125

The tests for parallelism and equal predictive ability for sunspot numbers are as
follows:

HO : ‘l]%,Zl - ‘]]%,ZQ/US i’,Zl # ¢‘I]%,ZQ (18)
a = 0.05.

Test statistics:
W=(A0)'(AAA")"1(AB)

Computation:
Using the estimates of the parameters

© = (1.591, —0.82, 1.089, —0.371)

0.0013 —0.0011 0O 0
—0.001 0.0013 0 0

0 0 0.013 —0.01 |~

0 0 —0.01 0.013
we obtain the values in Table 2 which shows the test statistic and p-values in
parenthesis for comparison of sunspot numbers(S) with square root(SS), log,
transforms(LS) and reciprocal (RS) of sunspot numbers.

http://www.bjs-uniben.org/
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Table 2: Result on Sunspot Numbers
S LS SS
676(0)

10.006(0.0004)
20.529(0.0001)  49.49(0)

366.835(0) 15(0.0006)
18556(0.0001)  55.128(0)  12.012(0.0025)

5.666(0.058)  24.747(0.00001)  32.528(0)

Inference:

Since when 0.05 > p — value we reject the null hypothesis of parallelism and
equal predictive ability. We conclude as follows; the sunspots numbers is not
parallel to any of these transformations and neither is any of the transforma-
tions to the others, even though they possess similar predictive abilities. Nev-
ertheless, for this reason of no parallelism, using these transformations may be
inappropriate for modeling and inference.

Example 2: A set of 200 observations was simulated using the folllowing pa-

rameters ¢ = 22,01 = 1.39.95 = —0.24,¢2 = 29,67 = 1.081, ¢ = —0.5 and
r = 4. Figure 2 represents dlfferent transformations of the simulated data.

1]
0

L]

il
B4
—_
1o
= g
——
=
—
e

Figure 2: Plot of square root, log., reciprocal and actual data of simulated data

In Table 3, we present the parameter estimates(with standard errors in parenthe-
sis) obtained using the simulated data and logarithm, square root and reciprocal
transformations.
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Table 3: Esimates of the parameter for simulated data and other transformations

Sq.root Simulate data

Reciprocal of Simulate data

Simulate data log Simulate data
SETAR(2:2.2).d=2 SETAR(2:2.2).d=1 SETARi2:2.2).d=1 SETAR(2:2,2).d=1
Estimated threshold=71.88 | Estimated threshold=2.632 | Estimated threshold=3.317 Estimated threshold=0.125
Lower Regim Esimates t-value Esimates t-value Esimates t-value Esimates t-value
Intercept 20.903(4.4) 0.96951 1.974(0.251) 1.871 3.8409(0.495) T.7T85 0.003(0.004) 3467
lag 1 1.222{0.067) 18.354 1.209(0.064) 18.888 1.216(0.064) 18.958 1.254(0.0898) 13.959
lad 2 -0.656(0.079) -B.2 -0.67600.074) 151-5. S0.680(0.075) -9.122 -0.593(1.116) -5.143
KSE 2016 0.0292 0.1216 (0.0004
n 157 163 163 102
R- (.999 1 0.999 (.999
Upper Regim
Intercept 10.600(11.59) 0932 117900821} 1.436 2.345(1.603) 1.462 0.008(0.0013) 6.447
lag | 0.992(0.111) §.044 0.965(0.129) 7.489 0.951(0.127) 7.481 1L.O072200.0751) 14,286
lad 2 0.169(-0169.) | 0952 | -0.246(0.216) -1.130 0.239(0.210) -1.13% 0.66260000915) | -7.243
RSE 1.E11 0.0256 0.108 0.0004
n 42 35 35 96

The different models are given below;
The simulated data,

29.993 + 1.2222;_1 — 0.6562¢—9, 2t—92 < T1.88

Zt —

The log. of simulated data,

10.699 4 0.9922;-1 — 0.1692¢_9, 2zt—2 > 71.88

1.974 +1.2092;—1 — 0.0702¢—9, z;—9 < 4.281

2t =

The square root of simulated data,

1.179 4 0.9652¢—1 — 0.242;_9, 249 > 4.281

2.34540.9512t—1 — 0.2392¢_9, 2t—92 > 8.506

{3.849 + 1.2162;—1 — 0.6802¢—2, z;—2 < 8.506
t pu—

The reciprocal of simulated data,

[ 0.005+ 1.254z_1 — 0.5952_s, 22 < 0.0145
= 00.0087 + 1.07222_ 1 — 0.4132 o, 25 > 0.0145

The tests for parallelism and equal predictive ability for simulated data are as

follows:

a=20

.05.

Test statistics:

Hy : ¢i,z1

4]

J J
T k,ZQUS k,Zl % ¢k722

W=(AO) (AAA)"1(AO)
http://www.bjs-uniben.org/
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Table 4: Result on Simulated data
S LS SS
2.186(0.335)

(

17.408(0.0002)

0.463(0.793)  3.866(0.145)
(
(

0.703(0.704)  8.274(0.016)
0.274(0.874)  4.01(0.135) 0.0098(0.995)
)

0.634(0.728)  8.343(0.015) 0.0044(0.998)

Table 4 shows the values of the test statistic and p-values (in parenthesis) for
comparison of simulated data (S) with square root(SS), log. transforms(LS) and
reciprocal (RS) of simulated data.

Inference: The reciprocal of the simulated data is not parallel to the simulated
data, the square root transform and the log, as figure 2 shows, but they all have
equal predictive ability. For the purpose of forecasting if we wish to transform
the data it will be appropriate to use either the square root or [og, transforms of
the data since they possess similar structure with the actual simulated data.
Example 3: Ozone depletion is measured by reduction in the total column
ozone above a point on the earth’s surface. The series consists of 114 observa-
tions. Figure 3 displays plots of Ozone depletion data and other transformations
of the data.

k. - m 1] tin [ ] E 1 m - i

(L] R

Figure 3: Plot of square root, log., reciprocal and actual data of ozone depletion
data

In Table 5 we present the parameter estimates(with the standard error in paren-
thesis) obtained using the ozone depletion data and logarithm, square root and
reciprocal transformations.
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Table 5: : Esimates of the parameter for Ozone Depletion data.and other transformations

Ozone Depletion data logeOzone Depletion data | Sg. root Ozone Depletion data | Reciprocal of Ozone Depletion data
SETARi2:3,3).d=3 SETAR(2:3,3),d=3 SETAR(2;3.3).d=3 SETAR(2;3,3).d=3
Estimated threshold=260.7 | Estimated threshold=5.563 Estimated threshold=16.14 Estimated threshold=0.004
Lower Regim Estimates t-value Estimates t-value Esiimates t-value Estimates t-value
Intercept 76.143021.136) | 3.603 1.609(0.451) 3567 4.67T401.312) 1562 0.0008(0.0004) 2328
lag 1 0.974(0.109) §.034 0.963(0.107) 0.019 0.968(0.108) 8976 1.799(0.144) 12.523
lad 2 -0.063(-0.191) | -0.384 | -0.071(0.160) 0.443 S0.067T(0.162) 0413 -LOT600.263) -4.097
lad 3 -0.191i0.115) -lee2 [ -00T7H0.111) -1.606 0.185(0.113) -1.634 0.064(0.180) 0.355
RSE 3213 0.012 0.0998 0.0004
n 47 47 47 63
k- 0.999 1 0.999
Upper Regim
Intercept 59350024001 [ 2348 L 1940.514) 2.325 3.4770(1.483) 134 0.0003(3.433) 3433
lag 1 1L772(0.140) 12.628 1.786(0.142) 12.583 1L7790.141) 12.608 0.95110.104) 9.106
lad 2 -1.053(0.251) -4 188 | -1.065(0.257) -4.147 -1.059(0.2534) -4.169 -0.07900.155) -0.507
lad 3 0.065(0.170) 0.385 0.065(0.175) 0.372 0.065(0.172) 0.379 -0.167(0.108) -1.547

The different models are given below;
The Ozone depletion data,

(76.143 + 0.9742_1 — 0.062— — 0.1912¢_3, 2—3 < 260.7
F756.359 + 1.77224—1 — 1.0532i—2 + 0.06524—_3, 23 > 260.7

The square root of Ozone depletion data,

4.674 4 0.9682;—1 — 0.0672¢—92 — 0.1852¢ 3, z;—3 < 16.14
3477+ 1.7792;—1 — 1.0592¢—2 + 0.0652¢—3, 2—3 > 16.14

The log. of Ozone depletion data,

~ [1.609 + 096321 — 0.0712—3 — 0.1792_3, 23 < 5.563
T 1194 4+ 1.7802 1 — 1.0652:_2 + 0.0652¢_3, 23 > 5.563

The reciprocal of of Ozone depletion data,

0.008 +1.7992;—1 — 1.0762¢—2 — 0.0642¢—3, 2zt—3 < 0.004
0.001 + 0.95102¢—1 — 0.0792¢—9 + 0.16724_3, z;—3 > 0.004

The tests for parallelism and equal predictive ability for ozone depletion data

are as follows:
Ho : )2, = 0p.2,V8 Bi ey # Gty
a = 0.05.
Test statistics:

W=(A0)'(AAA")"1(AB)

(20)

In Table 6, we present the values of the test statistic and the p-values (in paren-
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thesis) for comparison of Abuja ozone depletion data (Z) with square root(SZ),
loge transforms(1LZ) and reciprocal (RZ) of Abuja ozone depletion data (Z) .

Table 6: Result on Ozone Depletion data
Z RZ SZ
21.02(0.0001)

20.994(0.0001

)
7 0.0035(0.9999) 21.56(0.0001)
0.0127(0.9996) 21.37(0.0001)
17 0.0122(0.9996) 21.516(0.0001) 0.0027(0.9999)

0.0506(0.9970) 21.75(0.0001) 0.0127(0.9996)

Inference: In conclusion, the reciprocal of the ozone depletion data is not paral-
lel to the ozone depletion data, the square root transform and the log. as figure 3
shows. However, they all have equal predictive ability. For the purposes of fore-
casting, it will be appropriate to use either the square root or log, transforms of
the data since they possess similar structure with the actual data.

4. Conclusion

In this work, we considered the parallelism and equal predictive ability between
different Self-Exciting Threshold Autoregressive models in which the compar-
ison was between different transformations of the given time series data. We
established conditions for the relationship between equal predictive ability and
parallelism. From the work we see that in some cases the equal predictive abil-
ity of different models can be tested for, by using the parameters of the model
in which we simply consider if they are parallel. In other cases where the esti-

mated R? shows equal predictive ability for all, the test will still indicate which
model(s) (or data transformation(s)) are more appropriate for forecasting by
considering the parallelism between the series (which indicates similarities in
the structure of the time series).
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