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Abstract. The Long Memory (LM) phenomenon denotes a prolonged association be-
tween sequentially gathered observations, characterized by a gradual decline in the auto-
correlation function. The Autoregressive Tempered Fractional Integrated Moving Aver-
age (ARTFIMA) model addresses non-stationary time series displaying LM in the mean.
Conversely, the Fractionally Integrated Asymmetric Power Autoregressive Conditional
Heteroscedasticity (FIAPARCH) model is tailored for data exhibiting LM in volatility.
This study introduces a novel hybrid model, ARTFIMA-FIAPARCH, employing a trans-
formation method to tackle issues of serial correlation and heteroscedasticity identified in
the residuals of the ARTFIMA model. This innovative hybrid model is evaluated using
both simulated and real-world data, specifically Naira-Dollar exchange rate data. The as-
sessment involves comparing its performance with existing models like ARFIMA, ART-
FIMA and ARFIMA-FIAPARCH based on the minimum Akaike Information Criterion
(AIC) and forecast accuracy measures (MAE and RMSE). The findings indicate that ART-
FIMA (0,1.3,1.03,3)-FIAPARCH (1,0.08,1) emerges as the superior choice within the
ARTFIMA-FIAPARCH models, surpassing ARFIMA (3,1.03,0)-FIAPARCH (1,0.08,1).
Conclusively, ARTFIMA-FIAPARCH proves to be a favorable model for examining the
mean, volatility and leverage effects of any given economic and financial data. However, it
is recommended that economists and financial institutions consider adopting ARTFIMA-
FIAPARCH as a viable alternative to existing models.
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1. Introduction

Long Memory behavior refers to a phenomenon where the autocorrelation func-
tion of a time series decays very slowly, indicating a strong dependence between
observations that are far apart in time. This behavior is distinct from short mem-
ory behavior, where the autocorrelation function decays more rapidly. Granger
and Joyeux (1980) as well as Hosking (1981) played important roles in examin-
ing the statistical properties and implications of long memory. They introduced
the concept of fractionally differenced processes, where the differencing pa-
rameter can take non integer values. This led to the development of the Autore-
gressive Fractionally Integrated Moving Average (ARFIMA) model, which can
capture Long Memory behavior in time series data. The ARFIMA model allows
for fractional integration orders, which can better represent the persistence seen
in some real-world time series data.
Meerschaert et al. (2014) extended the concept further by introducing the Au-
toregressive Tempered Fractionally Integrated Moving Average (ARTFIMA)
model. This model accounts for cases where the differencing parameter might
be larger than one, which is not typically handled by the ARFIMA model. The
tempered parameter in the ARTFIMA model helps control the rate of decay
of autocorrelations, allowing for more flexibility in modeling different types
of long memory behaviors. Other long memory mean models in literature in-
cludes; Semi-parametric Fractional Autoregressive (SEMIFAR) model by Be-
ran (1999), Beta-ARFIMA (β-ARFIMA) model by Pumi et al. (2019) and AR-
FURIMA model by Rahman and Jibrin (2018).
To address long memory in the volatility of a time series data, fractional differ-
encing was also introduced to existing variance models. Nelson (1991) intro-
duced the Exponential Generalized Autoregressive Conditional Heteroscedas-
ticity (EGARCH) model, which was further extended by incorporating frac-
tional differencing. This resulted in the Fractionally Integrated EGARCH (FIE-
GARCH) model by Bollerslev and Mikkelson (1996). Baillie et al. (1996a) in-
troduced fractional differencing into the traditional GARCH model, creating the
Fractionally Integrated Generalized Autoregressive Conditional Heteroscedas-
ticity (FIGARCH) model and Tse (1998) introduced fractional differencing into
Asymmetric Power Autoregressive Conditional Heteroscedasticity (APARCH)
model of Ding et al. (1993) to have FIAPARCH model.
Research has demonstrated that the residuals of non stationary Long Memory
mean models, such as ARFIMA and ARTFIMA often exhibit serial correlation.
Zhou and He (2009) and Duppati et al. (2017) observed this pattern. Similarly,
relying solely on a Long Memory variance model like FIAPARCH can lead to
unrealistic predictions. To address these limitations, it is important to combine
mean and variance models into a hybrid framework which can simultaneously
yield improved results. This integration allows for a more comprehensive un-
derstanding of the underlying processes governing the data and enhances the
accuracy of predictions.
Baillie et al. (1996b) made a significant contribution to hybrid modeling by
introducing the ARFIMA-GARCH model. They applied this model to study
long memory in mean and variance in US inflation concurrently. Ishida and
Watanabe (2009) further advanced the research by utilizing conditional sum
of squares (CSS) estimators to estimate and compare the ARFIMA-GARCH
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model with other hybrid models. These estimators were applied to a large fi-
nancial time series dataset collected over time. Additionally, Leite et al. (2009)
and Almeida et al. (2017) focused on applying the hybrid ARFIMA-GARCH
model to data from the medical field. Their studies revealed that the model per-
formed well in capturing both the long range dependence and volatility present
in the medical time series data. Sivakumar and Mohandas (2009) conducted an
investigation into the modeling capabilities of the ARFIMA-FIGARCH model
using financial data. They compared the results of this hybrid model with those
of the ARFIMA model and the comparison revealed that financial market data
exhibits both long term memory and volatile characteristics. On a related note,
Korkmaz et al. (2009) examined the presence of long range dependence in the
Istanbul Stock Exchange (ISE) market. They applied the ARFIMA-FIGARCH
model to analyze the daily closing prices of ISE transaction prices spanning
from 1988 to 2008. The results indicated that there was no apparent evidence
of Long Memory in the returns. However, they did observe the presence of four
structural breakpoints in the returns. Interestingly, the data did exhibit a Long
Memory in terms of volatility.
Recent research has introduced several hybrid models aimed at studying Long
Memory in the mean component of time series data. Ambach and Am-
bach (2018) proposed the ARFIMA-P-GARCH process; Rahman and Jibrin
(2018) introduced the Autoregressive Fractional Unit Root Integrated Mov-
ing Average-GARCH (ARFURIMA-GARCH) model; and Kabala (2020) in-
troduced the ARTFIMA-GARCH model. Most resent in the study of Long
Memory are development of ARFURIMA-APARCH by Jibrin et al. (2022) and
ARTFIMA-FIGARCH by Umar et al. (2023). These models have successfully
captured Long Memory in the mean, but they have not explicitly addressed
Long Memory in the variance or leverage effect. However, it is important to
note that none of these hybrid models have been specifically designed to study
Long Memory in the mean, variance and leverage effect concurrently.
In light of this, we introduce a hybrid model called ARTFIMA-FIAPARCH for
studying the Long Memory in mean, volatility and leverage effects. The objec-
tive is to enhance the accuracy of model fitting and the generation of reliable
forecast results.

2. Materials and Method

The general form of an ARFIMA model of Granger and Joyeux (1980) and
Hosking (1981) is given by:

φ(L)(1− L)dYt = θ(L)εt, 0 < d < 1 (1)

The φ(L) and θ(L) are called characteristics polynomial and the (1 − L)d is
the fractional differencing filter. The φ1, φ2, ..., φp and θ1, θ2, ...θq are unknown
parameters and must be estimated from the sample data. d is the Long Memory
parameter, L lag operator and εt is the error term.
The ARTFIMA model of Meerchaert et al. (2014) is defined as follows:

φ(L)(1− e−λL)dYt = θ(L)εt (2)
http://www.bjs-uniben.org/
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where φ(L) and θ(L) are as define in Equation (1), d > 0, and λ > 0 is the
tampering parameter. It is also called the stability index for measuring the heavy
tail of a time series. The (1− e−λL)d is the fractional filter for transforming the
nonstationary time series Yt.
Following Engle (1982), εt in Equation (2) is considered to be a stochastic pro-
cess defined as:

εt = atσt (3)

where E(at) = 0, V ar(at) =1 and σt is positive and changes with respect to
time, t. This implies that the process {at} , is assumed to be serially uncorrelated
and expressed as at ∼ iid(0, 1)

2.1 Assumptions of the ARTFIMA(p, λ, d, q)-FIAPARCH (1,d,1) Model
i. The current study assumes that the model in Equation (2) could not com-

pletely eliminate the magnitude of trend, heavy tail and Long Memory in
the time series Y1, Y2, .., YN and large proportion of these variations are
also found to be present in the residuals ε1, ε2,...,εN of the ARTFIMA
model in Equation (2).

ii. Also, the current study assumes that the residuals from the ARTFIMA
model, ε1, ε2,...,εN are autocorrelated and heteroscedastic. In time series
analysis, estimating the ARTFIMA alone would lead to bad modeling and
presenting an unreliable forecast.

iii. The current study assumes that there is substantially high correlation be-
tween absolute returns than squared returns, a stylized fact of high fre-
quency financial returns also called Long Memory which is similar to the
observations of Safadi and Pereira (2010) and Rahman and Jibrin (2018).

The ARTFIMA-FIAPARCH hybrid model, denoted as ARTFIMA(p, λ, d1, q)-
FIAPARCH(1, d2, 1), is employed to analyze enduring correlations in mean,
volatility, and the leverage effect within time series datasets. Tse (1998) FIA-
PARCH(1,d,1) model, which forms part of this hybrid, is defined as follows:

σ2t = ω[1− β(L)]−1 + {1− [1− β(L)]−1α(L)(1− L)d}(|εt| − γεt)
δ (4)

Let η∗ = ω[1− β(L)]−1 and τ∗ = {1− [1− β(L)]−1α(L)(1−L)d}(|εt| − γεt)
δ

Now σt = (η∗ + τ∗)
1
2 (5)

substituting Equation (5) into Equation (3), we have

εt = (η∗ + τ∗)
1
2 at (6)

http://www.bjs-uniben.org/



21 Umar et al.
Consider ARTFIMA(p, λ, d, q)

(1− e−λL)dYt =

p∑
i=1

ϕi(1− e−λL)dYt−i +

q∑
j=1

θjεt−j + εt (7)

Also substituting Equation (6) into Equation (7), we have
ARTFIMA(p, λ, d1, q)-FIAPARCH(1, d2, 1) hybrid model which is repre-
sented as:

Yt =

p∑
i=1

ϕi(1− e−λL)d1Yt−i +
q∑

j=1
θjεt−j + (η∗ + τ∗)

1
2 at

(1− e−λL)d1
(8)

where ϕ, θ, α, β, λ, δ, γ and d1, d2 are parameters of the model to be estimated.
The ω > 0, d = d1 and d2 are Long Memory parameters for mean and variance
models respectively and at is the error term for the hybrid model. δ and γ are
power term and leverage effect parameters respectively.

2.2 Properties of the Model
This subsection deals with some properties of the ARTFIMA-FIAPARCH
Model.

2.2.1 Mean
Consider ARTFIMA(1, λ, d1, 1)-FIAPARCH(1, d2, 1)

Yt = ϕ1Yt−1 + θ1(1− e−λL)−dεt−1 + (1− e−λL)−d (η∗ + τ∗)
1
2 at (9)

E [Yt] = ϕ1E [Yt−1] + θ1(1− e−λL)−dE [εt−1] + (1− e−λL)−d (η∗ + τ∗)
1
2 E [at]

(10)

µ = µϕ1 (11)

µ− µϕ1 = 0 (12)

µ = 0 (13)

E[Yt] = E[Yt−1] = µ and E[εt−1] = E[at] = 0

∴ ARTFIMA-FIAPARCH is a zero mean Process.
http://www.bjs-uniben.org/
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2.2.2 Variance
To obtain the variance of the model, we first multiply Equation (9) by Yt and
taking its expectation we have:

E
[
Y 2
t

]
= ϕ21E

[
Y 2
t−1

]
+ 2ϕ1θ1(1− e−λL)−dE [εt−1Yt−1] + 2ϕ1(1− e−λL)−d

×
√

(η∗ + τ∗) [atYt−1] + 2θ1((1− e−λL)−d))2
√

(η∗ + τ∗)E [atεt−1]
+θ21((1− e−λL)−d))2E

[
ε2t−1

]
+ ((1− e−λL)−d))2(η∗ + τ∗)E

[
a2t
]

(14)

But E
[
Y 2
t

]
= E

[
Y 2
t−1

]
= γ0 and E [εt−1Yt−1] = E [atYt] = σ2ε

γ0 =
σ2ε

[
2ϕ1θ1 + θ21(1− e−λL)−d + (η∗ + τ∗)(1− e−λL)−d

]
(1− e−λL)d(1− ϕ21)

(15)

The variance of ARTFIMA-FIAPARCH Process is given in Equation (15).

2.2.3 Autocovariance at Lag 1
To obtain autocovariance at lag 1, multiply equation (9) Yt−1 and taking its
expectation we have:

E [Yt.Yt−1] = E

[
ϕ1Yt−1 + θ1(1− e−λL)−dεt−1 + (1− e−λL)−d

√
(η∗ + τ∗)at

]
×
[
ϕ1Yt−2 + θ1(1− e−λL)−dεt−2 + (1− e−λL)−d

√
(η∗ + τ∗)at−1

] (16)

Simplifying Equation (16) further gives:

γ1 =
σ2ε

(
ϕ1
√

(η∗ + τ∗) + θ1(1− e−λ)−d
)

(1− e−λL)d(1− ϕ21)
(17)

2.2.4 Autocorrelation at Lag 1 (ρ1)

ρ1 =
γ1
γ0

ρ1 =
ϕ1
√

(η∗ + τ∗) + θ1(1− e−λL)−d

2ϕ1θ1 + θ21(1− e−λL)−d + (η∗ + τ∗)(1− e−λL)−d
(18)

3. Results and Discussion

3.1 Simulation
In this section, we generated datasets using Monte Carlo simulation for vary-
ing sizes (n = 100, 200, 500, and 1000) for ARTFIMA modeling. Afterwards,
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we replicated the same datasets for the ARTFIMA-FIAPARCH and ARFIMA-
FIAPARCH estimations. For the hybrid models, we performed the estimation
process multiple times, exploring different possible combinations of p and q.

Table 1: AIC Values and p-values of Diagnostic Tests for ARTFIMA Model
using sample sizes n=100, 200, 500 and 1000

N ARTFIMA (p, λ,d,q) AIC Ljung-Box Test ARCH-LM Test
ARTFIMA (1, λ,d,0) 1453.53 0.04199 2.2e-16
ARTFIMA (0, λ,d,1) 1413.617 0.0003727 2.2e-16

100 ARTFIMA (1, λ,d,1) 1384.246 0.0006916 2.2e-16
ARTFIMA (2, λ,d,0) 1447.924 0.0005203 2.2e-16
ARTFIMA (0, λ,d,2) 1413.768 0.0005376 2.2e-16
ARTFIMA (1, λ,d,0) 735.2701 0.04199 0.0008
ARTFIMA (0, λ,d,1) 735.3077 0.0003727 0.0005

200 ARTFIMA (1, λ,d,1) 737.2214 0.0006916 0.0001
ARTFIMA (2, λ,d,0) 738.0678 0.0005203 0.0001
ARTFIMA (0, λ,d,2) 737.784 0.0005376 2.2e-16
ARTFIMA (1, λ,d,0) 7284.098 0.02875 0.0044
ARTFIMA (0, λ,d,1) 7085.71 3.163e-07 0.00023

500 ARTFIMA (1, λ,d,1) 7087.665 3.075e-07 0.0249
ARTFIMA (2, λ,d,0) 7237.371 0.003882 0.0004
ARTFIMA (0, λ,d,2) 7090.789 4.161e-07 2.2e-16
ARTFIMA (1, λ,d,0) 14567.71 0.0002619 2.2e-16
ARTFIMA (0, λ,d,1) 14172.75 1.854e-12 2.2e-16

1000 ARTFIMA (1, λ,d,1) 14174.68 1.953e-12 2.2e-16
ARTFIMA (2, λ,d,0) 14449.01 5.589e-06 2.2e-16
ARTFIMA (0, λ,d,2) 14181.66 2.064e-12 2.2e-16

The results obtained from performing the Ljung-Box Test and ARCH-LM Test
on the simulated data sets, as presented in Table 1 show p-values less than 0.05
which indicate that the residuals of the ARTFIMA model show evidence of se-
rial correlation and heteroscedasticity. This suggests that the ARTFIMA model
alone may not be sufficient to adequately capture the complexities in the simu-
lated datasets and there is a need to enhance it by combining it with a variance
model. To address this issue, FIAPARCH variance model is considered and
integrated into the ARTFIMA model. The aim for incorporating this variance
model is to minimize errors and remove the serial correlation and heteroscedas-
ticity in the data which ultimately will lead to an improved and more accurate
representation of the underlying process.

Table 2: AIC Values and p-values for Diagnostic Tests for ARFIMA-
FIAPARCH and ARTFIMA-FIAPARCH Model using sample sizes n=100, 200,
500 and 1000

N Model AIC Ljung-Box ARCH-LM Model AIC Ljung-Box ARCHLM
ARFIMA(1,d1,0)-FIAPARCH(1,d2,1) 14.328 0.802 0.698 ARTFIMA(1, λ,d1,0)-FIAPARCH(1,d2,1) - - -
ARFIMA(0,d1,1)-FIAPARCH(1,d2,1) 14.328 0.832 0.679 ARTFIMA(0, λ,d1,1)-FIAPARCH(1,d2,1) 14.326 0.877 0.6734

100 ARFIMA(1 ,d1,1)-FIAPARCH(1,d2,1) - - - ARTFIMA(1, λ,d1,1)-FIAPARCH(1,d2,1) 14.352 0.977 0.4013
ARFIMA(2,d1,0)-FIAPARCH(1,d2,1) 14.348 0.273 0.701 ARTFIMA(2, λ,d1,0)-FIAPARCH(1,d2,1) 14.348 0.346 0.9422
ARFIMA(0,d1,2)-FIAPARCH(1,d2,1) 14.347 0.288 0.683 ARTFIMA(0, λ,d1,2)-FIAPARCH(1,d2,1) 14.347 - -
ARFIMA(1,d1,0)-FIAPARCH(1,d2,1) 14.211 0.891 0.845 ARTFIMA(1, λ,d1,0)-FIAPARCH(1,d2,1) 14.211 0.044 0.1256
ARFIMA(0,d1,1)-FIAPARCH(1,d2,1) 14.210 0.951 0.849 ARTFIMA(0, λ,d1,1)-FIAPARCH(1,d2,1) 14.152 0.765 0.9765

200 ARFIMA(1,d1,1)-FIAPARCH(1,d2,1) 14.195 0.689 0.720 ARTFIMA(1, λ,d1,1)-FIAPARCH(1,d2,1) - - -
ARFIMA(2,d1,0)-FIAPARCH(1,d2,1) 14.218 0.794 0.915 ARTFIMA(2, λ,d1,0)-FIAPARCH(1,d2,1) - - -
ARFIMA(0,d1,2)-FIAPARCH(1,d2,1) 14.217 0.937 0.916 ARTFIMA(0, λ,d1,2)-FIAPARCH(1,d2,1) 14.188 0.8765 0.7654
ARFIMA(1,d1,0)-FIAPARCH(1,d2,1) 14.212 0.979 0.887 ARTFIMA(1, λ,d1,0)-FIAPARCH(1,d2,1) - -
ARFIMA(0,d1,1)-FIAPARCH(1,d2,1) 14.212 0.979 0.888 ARTFIMA(0, λ,d1,1)-FIAPARCH(1,d2,1) 14.249 0.672 0.8041

500 ARFIMA(1,d1,1)-FIAPARCH(1,d2,1) 14.216 0.979 0.889 ARTFIMA(1, λ,d1,1)-FIAPARCH(1,d2,1) 14.201 - -
ARFIMA(2,d1,0)-FIAPARCH(1,d2,1) 14.216 0.979 0.897 ARTFIMA(2λ,d1,0)-FIAPARCH(1,d2,1) - - -
ARFIMA(0,d1,2)-FIAPARCH(1,d2,1) 14.216 0.979 0.893 ARTFIMA(0, λ,d1,2)-FIAPARCH(1,d2,1) 14.253 0.999 0.6837
ARFIMA(1,d1,0)-FIAPARCH(1,d2,1) 14.198 0.952 0.167 ARTFIMA(1, λ,d1,0)-FIAPARCH(1,d2,1) 14.579 0.898 0.2448
ARFIMA(0,d1,1)-FIAPARCH(1,d2,1) 14.237 0.761 0.217 ARTFIMA(0, λ,d1,1)-FIAPARCH(1,d2,1) 14.181 0.763 0.4536

1000 ARFIMA(1,d1,1)-FIAPARCH(1,d2,1) - - - ARTFIMA(1, λ,d1,1)-FIAPARCH(1,d2,1) - - -
ARFIMA(2,d1,0)-FIAPARCH(1,d2,1) - - - ARTFIMA(2, λ,d1,0)-FIAPARCH(1,d2,1) 14.459 0.95 0.5164
ARFIMA(0,d1,2)-FIAPARCH(1,d2,1) 14.183 0.951 0.156 ARTFIMA(0, λ,d1,2)-FIAPARCH(1,d2,1) -
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In summary, the diagnostic assessment across the simulated datasets in Table
2 indicates lower AIC values in comparison to the ARTFIMA mean model in
Table 1. The p-values associated to the two hybrid models are less than 0.05
therefore exhibited no discernible patterns and the variability of the residuals
seemed consistent across the datasets.

Table 3: Estimation of ARFIMA(p,d1,q) FIAPARCH(1,d2,1) and
ARTFIMA(p,λ,d1,q)-FIAPARCH(1,d2,1) with AIC Values and Measures
of Forecast Accuracy Values using Simulated Datasets

N Model AIC MAE RMSE Model AIC MAE RMSE
100 ARFIMA(1,d1,0)-FIAPARCH(1,d2,1) 14.328 207.275 250.428 ARTFIMA(0, λ,d1,1)-FIAPARCH(1,d2,1) 14.326 0.856 1.055
200 ARFIMA(1,d1,1)-FIAPARCH(1,d2,1) 14.195 234.253 270.223 ARTFIMA(0, λ,d1,1)-FIAPARCH(1,d2,1) 14.152 0.845 1.329
500 ARFIMA(1,d1,0)-FIAPARCH(1,d2,1) 14.212 248.607 287.407 ARTFIMA(1, λ,d1,1)-FIAPARCH(1,d2,1) 14.201 0.852 0.987

1000 ARFIMA(0,d1,2)-FIAPARCH(1,d2,1) 14.183 250.004 288.512 ARTFIMA(0, λ,d1,1)-FIAPARCH(1,d2,1) 14.181 0.867 1.002

In summary, the results from Table 3 indicate that the ARTFIMA-FIAPARCH
model outperforms the existing ARFIMA-FIAPARCH model in terms of fore-
casting accuracy. Therefore, the incorporation of the FIAPARCH variance
model into the ARTFIMA model has led to significant improvements, making
the hybrid model a more suitable choice for analyzing the simulated data and
making more accurate predictions.

3.2 Application
This section presents the application of the ARTFIMA, ARFIMA, ARTFIMA-
FIAPARCH and ARFIMA-FIAPARCH model by using daily exchange rate
data of Nigeria Naira (NGN) Vs US Dollar (USD) obtained from cbn.gov.ng
from 2nd January 2013 to 23rd May 2023.

Figure 1: Time Series Plot and ACF for daily NGN Vs USD Exchange Rate.

Figure 1 Illustrates a continuous decrease in the chart of the NGN Vs USD ex-
change rate from 2013 to 2023 highlights a persistent devaluation of the Naira
against the Dollar. Despite occasional fluctuations, the overall trajectory sig-
nifies a consistent weakening of the naira. Multiple factors contribute to this
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pattern, including the decline in oil prices, a substantial current account deficit,
and governmental monetary policies. The repercussions of the naira’s devalu-
ation have adversely impacted the Nigerian economy, leading to various nega-
tive effects. The autocorrelation function (ACF) plot for the NGN Vs USD ex-
change rate illustrates a prominent positive correlation, signaling a substantial
and strong association between the current exchange rate and the rate observed
on the preceding day. The ACF plot implies that the time series of the NGN
Vs USD exchange rate does not exhibit stationarity, indicating a non-stationary
characteristic and the existence of certain Long Memory effects.

3.3 Mean Modeling
This section focuses on identifying the parameters for each set of candidate
mean models, namely the ARFIMA and ARTFIMA models. The goal is to de-
termine the appropriate parameter values that best capture the characteristics of
the data.
ARFIMA and ARTFIMA Mean Models Identification
Table 4 presents the results of the analysis conducted on the NGN vs. USD
exchange rate dataset using two mean models: ARFIMA and ARTFIMA. The
table shows the estimated parameter values for each model, which represent the
specific values chosen to characterize the mean component of the time series
data. These parameter estimates are crucial in understanding and describing
how the mean of the exchange rate series behaves over time for both models.

Table 4: AIC and Diagnostic tests P-values for ARFIMA(p,d,q) and ARTFIMA
(p,λ,d,q) Models

ARFIMA(p,d,q) ARTFIMA (p,λ,d,q)
ARFIMA (p,1.3,q) AIC Ljung-Box Test ARCH-LM TestB ARTFIMA (p,1.3,1.03,q) AIC Ljung-Box Test ARCH-LM Test
ARFIMA (1,d,0) 11432.9 0.0003 2.2e-16 ARTFIMA (1, λ,d,0) 11379.8 0.0004 2.2e-16
ARFIMA (0,d,1) 14779.5 0.0003 2.2e-16 ARTFIMA (0, λ,d,1) 11379.8 0.0004 2.2e-16
ARFIMA (1,d,1) 11434.9 0.0004 2.2e-16 ARTFIMA (1, λ,d,1) 11380.8 0.0007 2.2e-16
ARFIMA (2,d,0) 11435.8 0.0003 2.2e-16 ARTFIMA (2, λ,d,0) 11382.0 0.0005 2.2e-16
ARFIMA (0,d,2) 13793.6 3.195e-05 2.2e-16 ARTFIMA (0, λ,d,2) 11381.9 0.0005 2.2e-16

The AIC values are compared to determine the best-fit models, and it was found
that the ARTFIMA models had the lowest AIC values. This suggests that the
ARTFIMA models are more suitable for the data compared to the ARFIMA
models. However, upon examining the residuals of both the ARFIMA and ART-
FIMA models, it is observed that they exhibited evidence of serial correlation
and heteroscedasticity. This is confirmed by having p-values that are less than
0.05, indicating significant departures from normality. To address these issues
and improve model fitting, the study considered incorporating fractionally in-
tegrated volatility models, specifically the FIAPARCH models, into both the
ARFIMA and ARTFIMA models. The inclusion of FIAPARCH variance model
aims to better capture the volatility characteristics of the data. Further analy-
ses are conducted based on the hybrid models of ARFIMA-FIAPARCH and
ARTFIMA-FIAPARCH to improve the overall models’ fit to the data.

3.4 The Hybrid Models Identification
The estimation procedures for the two hybrid models are repeated for multiple
iterations i.e p ≤ 3 and q ≤= 3 while it is assumed that the residuals of mod-
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els follow a normal (norm) distribution. Akaike Information Criteria (AIC) is
used to select the optimal models and the performance of the models are eval-
uated using forecast accuracy measures such as Mean Absolute Error (MAE)
and Root Mean Square Error (RMSE) for basis of comparison. Following the
diagnostic tests and model identification, the most optimal models for the two
hybrid models are identified for daily NGN Vs USD exchange rate data.

Table 5: The Estimation of ARFIMA(p,1.03,q) FIAPARCH(1,0.08,1) and
ARTFIMA(p,1.5,1.03,q)-FIAPARCH(1,0.08,1) with their AIC and Diagnostic
Test P-values using NGN Vs USD Data

ARFIMA(p,1.03,q)-FIAPARCH(1,0.08,1) ARTFIMA(p,1.5,1.03,q)-FIAPARCH(1,0.08,1)
ARFIMA(1,d1,0)-FIAPARCH(1,d2,1) -1.828 0.946 0.971 ARTFIMA(1, λ, d1,0)-FIAPARCH(1,d2,1) -1.834 0.965 0.961
ARFIMA(0, d1,1)-FIAPARCH(1,d2,1) 7.182 0.889 0.984 ARTFIMA(0, λ, d1,1)-FIAPARCH(1,d2,1) -1.832 0.973 0.963
ARFIMA(1, d1,1)-FIAPARCH(1,d2,1) -2.701 0.985 0.969 ARTFIMA(1, λ, d1,1)-FIAPARCH(1,d2,1) -1.808 0.921 0.965
ARFIMA(2, d1,0)-FIAPARCH(1,d2,1) - - - ARTFIMA(2, λ, d1,0)-FIAPARCH(1,d2,1) -3.193 0.961 0.973
ARFIMA(0, d1,2)-FIAPARCH(1,d2,1) 6.329 0.919 0.984 ARTFIMA(0, λ, d1,2)-FIAPARCH(1,d2,1) -1.864 0.981 0.963
ARFIMA(2, d1,1)-FIAPARCH(1,d2,1) - - - ARTFIMA(2, λ, d1,1)-FIAPARCH(1,d2,1) -2.809 0.954 0.973
ARFIMA(1, d1,2)-FIAPARCH(1,d2,1) - - - ARTFIMA(1, λ, d1,2)-FIAPARCH(1,d2,1) -1.872 0.8811 0.9576
ARFIMA(3, d1,0)-FIAPARCH(1,d2,1) -2.771 0.987 0.969 ARTFIMA(3, λ, d1,0)-FIAPARCH(1,d2,1) -2.998 0.962 0.973
ARFIMA(0, d1,3)-FIAPARCH(1,d2,1) 5.676 0.974 0.984 ARTFIMA(0, λ, d1,3)-FIAPARCH(1,d2,1) -3.281 0.957 0.973
ARFIMA(3, d1,1)-FIAPARCH(1,d2,1) - - - ARTFIMA(3, λ, d1,1)-FIAPARCH(1,d2,1) -3.153 0.943 0.973
ARFIMA(1, d1,3)-FIAPARCH(1,d2,1) -2.548 0.983 0.983 ARTFIMA(1, λ, d1,3)-FIAPARCH(1,d2,1) -1.873 0.988 0.961
ARFIMA(2, d1,2)-FIAPARCH(1,d2,1) -1.719 0.207 0.975 ARTFIMA(2, λ, d1,2)-FIAPARCH(1,d2,1) -1.896 0.979 0.958
ARFIMA(3, d1,2)-FIAPARCH(1,d2,1) - - - ARTFIMA(3, λ, d1,2)-FIAPARCH(1,d2,1) -1.889 0.976 0.963
ARFIMA(2, d1,3)-FIAPARCH(1,d2,1) - - - ARTFIMA(2, λ, d1,3)-FIAPARCH(1,d2,1) -1.893 0.982 0.957

Table 5 showcases the results obtained by applying the ARFIMA-FIAPARCH
and ARTFIMA-FIAPARCH hybrid models to the NGN vs. USD dataset. No-
tably, both models exhibit residuals that lack discernible patterns or system-
atic relationships. Furthermore, the variability in the residuals remains constant
across the entire dataset, indicating homoscedasticity. Additionally, the absence
of serial correlation (diagnostic tests p-values ¡ 0.05) in the residuals reinforces
the reliability of both the ARFIMA-FIAPARCH and ARTFIMA-FIAPARCH
models. The homoscedastic and nonserially correlated nature of the residuals in
both models contributes to their robustness and reinforces their potential utility
in capturing and explaining the observed patterns in the NGN vs. USD exchange
rate.

Table 6: Estimation of ARFIMA(p,d,q) –FIAPARCH(1,1) and ARTFIMA
(p,λ,d,q)-FIAPARCH(1,1) with AIC Values

Model Parameters Estimate P-value AIC MAE RMSE
ARTFIMA (0,1.3,1.03,3)-FIAPARCH (1,0.08,1) θ1 -0.208 0.000 -12.27 0.299 3.589

θ2 -0.272 0.000
θ3 0.102 0.000
α 0.286 0.000
β 0.742 0.000
γ 0.444 0.000
δ -0.152 0.000

ARFIMA (3,1.03,0)-FIAPARCH (1,0.08,1) ϕ1 0.763 0.000 -5.921 6.745 6.226
ϕ2 0.597 0.000
ϕ3 -0.360 0.000
α 0.314 0.000
β 0.715 0.000
γ 0.406 0.000
δ -0.326 0.000

Table 6 Provides forecast accuracy and parameter estimates for NGN versus
USD using hybrid models ARTFIMA-FIAPARCH and ARFIMA-FIAPARCH.
Within these models, ARTFIMA (0, 1.3, 1.03, 3)-FIAPARCH (1, 0.08, 1) dis-
play lower forecast accuracy values compared to its counterpart. Notably, only
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the moving average part of the mean model is statistically significant. The esti-
mated moving average coefficients (θ1, θ2, and θ3) indicate the impact of error
terms at lags 1, 2, and 3. Regarding volatility, the model’s parameters offer
meaningful insights. The values α = 0.286 and β = 0.742 signify a substantial
influence of recent squared errors on current volatility, underscoring the strong
impact of past squared errors on present volatility. while γ = 0.444 indicates a
moderate positive impact of long-term past volatility on the current volatility.
This implies that past periods of high volatility have a notable effect on the cur-
rent volatility and finally, δ= -0.152 reflects an asymmetric response, with neg-
ative shocks having a larger impact on volatility than positive shocks of NGN
vs USD exchange rate.

4. Conclusion

The simulation study conducted yielded valuable insights into the performance
of the newly developed model, and these insights are further validated by the
results obtained from a real-life dataset, as outlined in Table 6. Upon exam-
ination of the result, it is evident that ARTFIMA (0,1.3,1.03,3)-FIAPARCH
(1,0.03,1) demonstrates significantly lower forecast accuracy values compared
to its counterpart, ARFIMA (3,1.03,0)-FIAPARCH (1,0.03,1). This consistent
pattern observed across various simulated datasets and the real-life data under-
scores the performance of ARTFIMA-FIAPARCH hybrid model in minimizing
errors when compared to ARFIMA-FIAPARCH. In summary, the comprehen-
sive assessment of results across all datasets consistently supports the conclu-
sion that the ARTFIMA-FIAPARCH hybrid model exhibits superior forecast-
ing accuracy by minimizing errors in comparison to its established counterpart,
ARFIMA-FIAPARCH. This validation establishes the new model as a better fit
for the examined real-life dataset. The practical implications of this finding are
substantial, suggesting that the ARTFIMA-FIAPARCH model can offer more
reliable and accurate predictions, making it a valuable tool for forecasting NGN
Vs USD exchange rate characterized by long memory in mean, volatility, and
leverage effects.
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