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Abstract. This paper presents a model for the Corona-Virus (COVID-19) disease tak-
ing into account random perturbations. The proposed model is composed of six different
classes namely the Susceptible population, the Exposed population, the Asymptomatic in-
fectious population, the Symptomatic Infectious population, the Quarantined population
and the Recovered population (SEIAISQR). Using appropriately formulated stochastic
Lyapunov functions, we established sufficient conditions for the existence and unique-
ness of the positive solutions to the model. The condition for the extinction of the dis-
ease is also established. Numerical simulations are applied to illustrate the analytical re-
sults obtained herein.The reproduction number was obtained as RS

0 = 0.2585 < 1 and
RS

0 = 2.4423 > 1 which show that the stability analysis of the equilibrium point is lo-
cally asymptotically stable whenever the basic reproduction number RS

0 < 1 and unstable
whenever RS

0 > 1.
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1. Introduction

The 2019 novel coronavirus has been known to the virologist’s community as
Severe Acute Respiratory Syndrome Coronavirus-2 (SARS-CoV-2) (Lai et al.,
2020). Corona virus is a family of many diverse and numerous viruses that can
infect both humans and animals that can cause a number of diseases (Mao,
1997). The name coronavirus, which means “crown virus” is related to the fact
that all viruses of this family have a crown-like shape when observed under
an electron microscope. The epidemic of novel coronavirus (COVID-19) in-
fections that began in China in late 2019 has rapidly grown and cases have
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Stochastic Modeling of COVID-19... 30
been reported worldwide. The virus appears to be transferred mostly through
narrow respiratory droplets by coughing, sneezing, or people’s interaction in
close proximity (usually less than one metre) with each other for a certain time
frame. These droplets can further be inhaled or can stay on the surfaces that
came in contact with the infected person that can now cause infection in others
by touching their nose, mouth or eyes. The virus possesses the ability to survive
on various surfaces commencing several hours (e.g. copper, cardboard), up to a
few days (e.g. plastic and stainless steel). Nonetheless, the quantity of the viable
virus certainly decays over a time span and might not be present in sufficient
quantity for causing the infection (Din et al., 2020). The COVID-19 pandemic
is considered as the biggest global threat worldwide because of thousands of
confirmed infections, accompanied by thousands of deaths over the world. The
only way to stop the spread of this disease is to quarantine or isolate the initially
infected population as shown by the Chinese Government and adhering to the
safety guidelines of World Health Organisation (WHO). Most of the real world
phenomenon are not simply deterministic, because in deterministic models, the
output of the model is fully determined by the parameter values and the initial
conditions. Stochastic models possess some inherent randomness. The same set
of parameter values and initial conditions will lead to an ensemble of different
outputs. A stochastic model includes a random component that uses a distri-
bution as one of the inputs, and results in a distribution for the output. These
distributions may reflect the uncertainty in what the input should be (e.g. a de-
terministic input plus noise), or may reflect a random process (i.e. a stochastic
input) (Perko, 2013, Wu and McGoogaan, 2020). In this paper, we shall propose
a stochastic epidemic model of COVID-19 virus with a varying population en-
vironment and categorize the total population into six different classes. The first
class is the susceptible individuals with white noise. The second class includes
the exposed individual with white noise. The third is the asymptomatic infected
individuals with white noise. The fourth is the symptomatic infected individual
with white nose. The fifth class consists of the quarantine individuals with white
noise. The sixth class consists of the recovered individuals with white noise. The
existence and uniqueness of the positive solution of the proposed model and the
disease’ extinction for the COVID-19 are carefully discussed. Furthermore, we
simulate the solution of the proposed model by using the higher-order stochastic
Milstein method, (Higham, 2001).

2. Materials and Method

2.1 Preliminaries
Definitions
Mao (1997) (i) The triple (Ω, f, P ) is called complete probability space if f
contains all subsets G of Ω with P -outer measure zero, that is, with

P ∗ (G) inf P (F );F ∈ f,G ⊂ F = 0 (1)

The subsets F of the set Ω which belong to F are called F -measurable sets.
These sets are also called events. For instance, P (F ) = “The probability that
the event F occurs”. Particularly, if P (F ) = 1, then we say that “F occurs with
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probability 1” or “almost surely (a.s)”
(ii) Let (Ω, f, P ) be a complete probability space. A random variable X is an f
measurable function X : Ω → Rn. Every random variable induces a probability
measure on Rn.
(iii) A stochastic process defined on a probability space (Ω, f, P ) is a parame-
terized collection of random variables Xtt ∈ T with index (or parameter) space
T and assuming values in Rn. note that for each t ∈ T , fixed, we have a random
variable Xt : ω → Rn;ω ∈ Ω. On the other hand, fixing ω ∈ Ω we have the sam-
ple path/trajectory or a realization of the stochastic process: Xt : t → Rn; t ∈ T
(iv) Let (Ω, f, P ) be a probability space. If X is a real valued random variable
and is integrable with respect to the probability measure P , then the expectation
of X (with respect to P ) is defined as:

E(X) =

∫
X(ω)dP (ω), ω ∈ Ω (2)

(v) let Xtt ∈ T be a real-valued stochastic process with discrete or con-
tinuous index set T . then Xtt ∈ T is called a Martingale if expectation,
E[|Xn|] < ∞, ∀ t ∈ T and if the conditional expectation is given by

E[Xtn+ 1|Xt1 = x1, Xt2 = x2, ..., Xtn = xn] = xn (3)

Equivalently, E[Xtn+ 1|ftn] = xn
(vi) Let (Ω, f, P ) be a probability space with filtration {ft}t≥0

. A one di-
mensional Brownian motion is a real-valued continuous {ft}-adapted process
{Bt}t≥0

with the following properties:
(i) B0 = 0a.s

(ii) for 0 ≤ S < t < ∞, the increment Bt − Bs is normally distributed with
mean zero and variance t− s.

(iii) for 0 ≤ s < t < ∞, the increment Bt −Bs is independent of fs
(iv) for almost every ω ∈ Ω, the Brownian sample path B(ω) is no where

differentiable.
(v) {Bt}t ≥ 0 is a continuous square-integrable Martingale and its quadratic

variation ⟨BtB⟩t = t.
The following notations are introduced
a
∨

b = the maximum of a and b
a
∧

b = the minimum of a and b
R+ = the set of all non-negative real numbers , that is R+ = [0,∞)
Rd = The d-dimensional Euclidean space.
Rd
+ = {x = (x1, ..., xd) ∈ Rd;xi > 0, 1 ≤ i ≤ d},

Lp([a, b];Rd)is the family of Rd-valued ft-adapted processes {f(t)}a≤t≤b such
that ∫ b

a
|f(t)|pdt < ∞ (4)
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C2 (R+×Rd;R+) is the family of all non-negative real- valued functions V (t, x)
defined on R+R

d such that they are twice continuously differentiable in x and
once in t.
Let x(t) be a one-dimensional Ito process on t ≥ 0 with the stochastic differen-
tial

dx(t) = f(t, x(t))dt+ g(t, x(t))dBt, x(0) = x0 (5)

where f ∈ L1 (R+ ×R;R) and g ∈ L2 (R+ ×R;R).
Let V ∈ C2 (R+ × R;R). Then V (t, x(t)) is an Ito process with the stochastic
differential given by:

dV (t, x(t)) =[Vt(t, x(t)) + Vx(t, x(t))f(t, x(t)) +
1

2
Vxx(t, x(t))g

2(t, x(t))]dt

+ Vx(t, x(t))g(t, x(t))dBt

(6)

Let x(t) be a d-dimensional Ito process on t ≥ 0 with the stochastic differential

dx(t) = f(t, x(t))dt+ g(t, x(t))dBt, x(0) = x0 (7)

where f ∈ L1(R+ ×R;R) and g ∈ L2(R+ ×Rd;Rd×m).
Let V ∈ C2(R+ × Rd;R+). Then V (t, x(t)) is again an Ito process with the
stochastic differential given by:

dV (t, x(t)) =[Vt(t, x(t)) + Vx(t, x(t))f(t, x(t)) +
1

2
trace(gT (t, x(t)))Vxx(t, x(t))g(t, x(t))]dt

+ Vx(t, x(t))g(t, x(t))dBt

(8)

The infinitesimal generator L associated with system (6) is defined by Mao
(1997): as:

L =
∂

∂t
+

d∑
i=1

fi(x, t)
∂

∂xi
+

1

2

d∑
i,j=1

[gT (x, t)g(x, t)]i,j
∂2

∂xi∂xj
(9)

Theorem according to Mao (1997), (i) if L acts on a function V ∈ C2(R+ ×
Rd;R+).

LV = [Vt(t, x(t)) + Vx(t, x(t))f(t, x(t)) +
1

2
trace[gT (t, x(t))Vxx(t, x(t))g(t, x(t))]dt (10)

where Vt =
∂V
∂t , Vx = ( ∂V∂x1

, ..., ∂V∂xd
), Vxx = ( ∂2V

∂xi∂xj
)d×d.

Again, the one dimensional Ito’s lemma in Mao (1997) can be re-written
as:

dV (x(t)) = LV (t, x(t))dt+ Vx(t, x(t))g(t, x(t))dBt (11)
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(ii) let f, g ∈ Mp([a, b];Rd) and let α, β be two real numbers. Then

(i)
∫ b
a f(t)dB(t) is ft - measurable

(ii) E
∫ b
a f(t)dB(t) = 0

(iii) E
∫ a
b |f(t)dB(t)|2 = E

∫ a
b |f(t)|2dt.

(iv)
∫ a
b |as(t) + βg(t)dB(t) = α

∫ a
b f(t)dB(t) + β

∫ a
b g(t)dB(t)

(iii) Consider the stochastic differential equation

dx(t) = f(t, x(t))dt+ g(t, x(t))dBt, x(t0) = x0, t0 ≤ t ≤ T. (12)

Assume that there exists two positive constants K1 and K2 such that for all
x, y ∈ Rd, t ∈ [t0, T ]

• (Lipschitz condition) :
∀ x, y ∈ Rd, t ∈ [t0, T ], |f(x, t)−f(t, y)|2V |g(t, x)−g(t, y)|2 ≤ K1|x−y|

• (Linear growth condition):
∀ (t, x) ∈ [t0, T ]XRd, |f(t, x)|2V |g(t, y)|22(1 + |x|2).

Then there exists a unique local solution.

2.2 Model Formulation
In this section, we formulate a stochastic model to study the transmission
dynamics of COVID-19. According to the characteristics of the disease,
we propose a Susceptible-Exposed-Asymptomatic Infectious-Symptomatic
Infectious-Quarantined-Removed epidemic model. We take into consideration
the variations of the population environment in order to study the dynamics
of COVID-19, in particular its long-term behaviour. Some of the assumptions
underlying the formulation of the model are:

1 The total population at any time t is denoted by N(t) and it is classified
into six exclusive groups of individuals: the Susceptible class S(t), the
Exposed class E(t), the Asymptomatic infectious class IA(t), the Symp-
tomatic infectious class IS(t), the Quarantine class Q(t), and the Recov-
ered R(t). That is, S(t)+E(t)+IA(t)+IS(t)+Q(t)+R(t) = N(t) which
is changing with time t.

2 The state variables and parameters included in the model are assumed to
be non-negative.

3 The infected individuals move to the quarantined class
4 Once the infection is confirmed, then the quarantined will go back to the

infected compartment.
In the light of the assumptions, we obtain the deterministic model:
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dS
dt

= π − ρ1βAIAS − ρ2βSISS − µS

dE
dt

= ρ1βAIAS + ρ2βSISS − (α + µ)E

dIA
dt

= (1− δ)αE − (γ + µx + µ)IA
dIS
dt

= αδE − (ω + µx + µ)IS
dQ
dt

= γIA + ωIS − (θ + µx + µ)Q

dR
dt

= θQ− µR


(13)

Figure 1: The schematic diagram of the SEIAISQR Model

where π is the recruitment rate into the susceptible class and µ, is the natural
death rate, β is the force of infection, ρ1 and ρ2 are the effective contact rate
between the symptomatic and asymptomatic individuals respectively, βA and
βS are the transmission probabilities of the virus from infectious individuals to
the susceptible class, µx is death due to COVID-19, (1 − δ)α the proportion of
individuals moving into the asymptomatic class, αδ the rate at which the indi-
viduals move into the symptomatic class, γ the rate at which the asymptomatic
class move into the quarantine class, ω is the rate at which the symptomatic
class are quarantined and θ is the recovery rate.
From the deterministic model in (13), we then formulate the stochastic model:

dS(t) = (π − ρ1βAIA(t)S(t)− ρ2βSIS(t)S(t)− µS(t))dt+ σ1S(t)dW1(t)

dE(t) = (ρ1βAIA(t)S(t) + ρ2βSIS(t)S(t)− (α + µ)E(t))dt+ σ2E(t)dW2(t)

dIA(t) = (1− δ)αE(t)− (γ + µx + µ)IA(t))dt+ σ3IA(t)dW3(t)

dIS(t) = (αδE(t)− (ω + µx + µ)IS(t))dt+ σ4IS(t)dW4(t)

dQ(t) = (γIA(t) + ωIS(t)− (θ + µx + µ)Q(t))dt+ σ5Q(t)dW5(t)

dR(t) = (θQ(t)− µR(t))dt+ σ6R(t)dW6(t)


(14)

where W1(t), W2(t), W3(t), W4(t), W5(t), W6(t) are independent standard
Brownian motions, and σ1, σ2, σ3, σ4, σ5, σ6 as the intensities of the standard
Gaussian white noises respectively.
The terms σ1S(t)dW1(t), σ2E(t)dW2(t), σ3IA(t)dW3(t), σ4IS(t)dW4(t),
σ5Q(t)dW5(t), σ6R(t)dW6(t) are the interactions between the individuals and
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the environment. The initial conditions are given by
(S(0), E(0), IA(0), IS(0), Q(0), R(0)) ∈ R6

+.

2.3 Existence and Uniqueness of the Solution of Stochastic Model
This section provides the existence and uniqueness of solution of the proposed
stochastic model in (14) using the Lyapunov method.

Theorem 2:
For any given initial values X0 = (S(0), E(0), IA(0, )IS(0), Q(0), R(0)) ∈ D
there is a unique solution Xt = X(t) = (S(t), E(t), IA(t), IS(t), Q(t), R(t))
for t ≥ 0, which will remain in D with probability one. That is,
P (S(t), E(t), IA(t), IS(t), Q(t), R(t)) ∈ D for all t ≥ 0.

proof:
For any given initial value X0 = (S(0), E(0), IA(0), IS(0), Q(0), R(0)) ∈
D there is a unique local solution Xt = X(t) =
(S(t), E(t), IA(t), IS(t), Q(t), R(t)) for t ∈ [0, τe), where τe is the explo-
sion time. To show that the solution is positive and exist globally, it is essential
to establish that τe = +∞ almost surely (a.s.). Suppose that k0 > 0 be
sufficiently large such that S(0), E(0), IA(0, )IS(0), Q(0), R(0) stays within
[ 1ko , k0] . Then, each k ≥ k0, define the stopping time
τk = inf{t ∈ [0, τe) : S(t) /∈ (1k , k) or E(t) /∈ (1k , k) or IA(t) /∈ (1k , k) or
IS(t) /∈ (1k , k) or Q(t) /∈ (1k , k) or R(t) /∈ (1k , k)}
where inf ϕ = ∞ and ϕ denotes the empty set. Obviously, τk is increasing as
k → ∞, thus τ∞ = lim

k→∞
τk, so, τ∞ ≤ τk a.s. If we prove that τ∞ = ∞ a.s then

τe = ∞ and ((S(t), E(t), IA(t), IS(t), Q(t), R(t)) ∈ D a.s for all t ≥ 0. Assume
that t∞ < ∞, then there exist a pair of constants T > 0 and ϵ ∈ (0, 1) such that
P{τ∞ ≤ T} > ϵ. Thus there is an integer k1 ≥ k0 such that

Pτk ≤ T > ϵ for all k ≥ k1 (15)

Define C2 function V1 : R
6
+ → R+ by

V1(S,E, IA, IS , Q,R) =(S − 1− lnS) + (E − 1− lnE) + (IA − 1− ln IA) + (IS − 1− ln IS)

+ (Q− 1− lnQ) + (R− 1− lnR)
(16)

Applying Ito’s Lemma on (16) gives
dV1 = (1 − 1

S )dS + 1
2
1
S
2
(dS)2 + (1 − 1

E )dE + 1
2
1
E
2
(dE)2 + (1 − 1

IA
)dIA +

1
2
1
IA

2
(dIA)

2+(1− 1
IS
)dIS+

1
2
1
IS

2
(dIS)

2+(1− 1
Q)dQ+ 1

2
1
Q
2
+(1− 1

R)dR+ 1
2
1
R
2
(dR)2

= (1− 1
S )(π − ρ1βAIAS − ρ2βSISS − µS)dt+ (1− 1

S )σ1S(t)dW1(t) +
1
2σ

2
1dt+

(1− 1
E )(ρ1βAIAS + ρ2βSISS − (α+ µ)E)dt+ (1− 1

E )σ2E(t)dW2(t) +
1
2σ

2
2dt+

(1− 1
IA
)((1− δ)αE − (γ + µx + µ)IA)dt+ (1− 1

IA
)σ3IA(t)dW3(t) +

1
2σ

2
3dt+

(1− 1
IS
)(αδE − (ω + µx + µ)IS)dt+ (1− 1

IS
)σ4IS(t)dW4(t) +

1
2σ

2
4dt+
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(1− 1

Q)(γIA + ωIS − (θ + µx + µ)Q)dt+ (1− 1
Q)σ5Q(t)dW5(t) +

1
2σ

2
5dt+

(1− 1
R)(θQ− µR)dt+ (1− 1

Q)σ6Q(t)dW6(t) +
1
2σ

2
6dt

Which simplifies to
dV1 = [(1− 1

S )(π − ρ1βAIAS − ρ2βSISS − µS) + 1
2σ

2
1+

(1− 1
E )(ρ1βAIAS + ρ2βSISS − (α + µ)E) + 1

2σ
2
2+

(1− 1
IA
)((1− δ)αE − (γ + µx + µ)IA) +

1
2σ

2
3+

(1− 1
IS
)(αδE − (ω + µx + µ)IS) +

1
2σ

2
4+

(1− 1
Q)(γIA + ωIS − (θ + µx + µ)Q) + 1

2σ
2
5+

(1− 1
R)(θQ− µR) + 1

2σ
2
6]dt+

(σ1(S − 1)dW1 + σ2(E − 1)dW2 + σ3(IA − 1)dW3 + σ4(IS − 1)dW4 + σ5(Q−
1)dW5 + σ6(R− 1)dW6)

and hence we obtain that
dV1 = LV1dt + (σ1(S − 1)dW1 + σ2(E − 1)dW2 + σ3(IA − 1)dW3 + σ4(IS −
1)dW4 + σ5(Q− 1)dW5 + σ6(R− 1)dW6)

where
LV1 = (1− 1

S )(π − ρ1βAIAS − ρ2βSISS − µS) + 1
2σ

2
1+

(1− 1
E )(ρ1βAIAS + ρ2βSISS − (α + µ)E) + 1

2σ
2
2+

(1− 1
IA
)((1− δ)αE − (γ + µx + µ)IA) +

1
2σ

2
3+

(1− 1
IS
)(αδE − (ω + µx + µ)IS) +

1
2σ

2
4+

(1− 1
Q)(γIA + ωIS − (θ + µx + µ)Q) + 1

2σ
2
5+

(1− 1
R)(θQ− µR) + 1

2σ
2
6

LV1 = π − µS − µE − µIA − µIS − µQ− µR

+(−π
S + ρ1βAIA + ρ2βSIS + µ) + (−ρ1βAIAS

E − ρ2βSISS
E + α + µ) + (−αE

IA

+δαE
IA

+ γ + µx + µ) + (−αδE
IS

+ ω + µx + µ)

+(−γIA
Q − ωIS

Q + θ + µx + µ) + (−θQ
R + µ) + σ2

1+σ2
2+σ2

3+σ2
4+σ2

5+σ2
6

2

LV1 ≤ π − µN − µx(IA + IS +Q) + µ+ (α + µ) + (γ + µx + µ) + (ω + µx + µ)

+(θ + µx + µ) + µ+ (ρ1βAIA + ρ2βSIS)+

σ2
1+σ2

2+σ2
3+σ2

4+σ2
5+σ2

6

2


(17)

LV1 ≤ π + 6µ+ 3µx + ρ1βAIA + ρ2βSIS + γ + ω + θ + α+ σ2
1+σ2

2+σ2
3+σ2

4+σ2
5+σ2

6

2

Note that S + E + IA + IS +Q+R ≤ π
µ , then

LV1 ≤ π+6µ+3µx+γ+ω+θ+α+ρ1βAIA+ρ2βSIS+
σ2
1+σ2

2+σ2
3+σ2

4+σ2
5+σ2

6

2 =: K
Thus we have
dV1 =Kdt+ (σ1(S − 1)dW1 + σ2(E − 1)dW2 + σ3(IA − 1)dW3 + σ4(IS − 1)dW4 + σ5(Q− 1)dW5

+ σ6(R− 1)dW6)
(18)
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Integrating both sides of (18) from 0 to τk

∧
T , we obtain∫ τk

∧
T

0
dV1(S(r), E(r), IA(r), IS(r), Q(r), R(r))

≤
∫ τk

∧
T

0
Kdr +

∫ τk
∧

T

0
(σ1(S(r)− 1)dW1(r) + σ2(E(r)− 1)dW2(r) + σ3(IA(r)− 1)dW3(r)+

σ4(IS(r)− 1)dW4(r) + σ5(Q(r)− 1)dW5(r) + σ6(R(r)− 1)dW6(r))


(19)

Taking expectation of both sides of (19) and Recalling E
∫ b
0 f(t)dB(t) = 0, we

have
EV1(S(τk

∧
T ), E(τk

∧
T ), IA(τk

∧
T ), IS(τk

∧
T ), Q(τk

∧
T ), R(τk

∧
T ))

≤ V1(S(0), E(0), IA(0), IS(0), Q(0), R(0) + E
∫ τk

∧
T

0 Kdr,
EV1(S(τk

∧
T ), E(τk

∧
T ), IA(τk

∧
T ), IS(τk

∧
T ), Q(τk

∧
T ), R(τk

∧
T ))

≤ V1(S(0), E(0), IA(0), IS(0), Q(0), R(0) +KT

Let Ωk = {τk ≤ T} for all k ≥ k1 then by (3) we have P (Ωk) ≥ ϵ.

Note that for every ω ∈ Ωk, we have at least S(τk, ω) or E(τk, ω) or IA(τk, ω) or
IS(τk, ω) or Q(τk, ω) or R(τk, ω) which is equivalent to
k or 1

k , thus V (S(τk, ω) or E(τk, ω) or IA(τk, ω) or IS(τk, ω) or Q(τk, ω) or
R(τk, ω) is no less than
k − 1− ln k or 1

k − 1− ln 1
k = 1

k − 1 + lnk

Hence,
V (S(τk, ω), E(τk, ω), IA(τk, ω), IS(τk, ω), Q(τk, ω), R(τk, ω)) ≥ (k − 1 −
lnk)

∧
(1k − 1 + ln k)

Then it follows that,
V(S(0), E(0), IA(0), IS(0), Q(0), R(0) +KT

≥ E(1ΩkV1(S(τk
∧

T ), E(τk
∧

T ), IA(τk
∧

T ), IS(τk
∧

T ), Q(τk
∧

T ), R(τk
∧

T )),
= E(1Ωk(ω)V1(S(τk, ω), E(τk, ω), IA(τk, ω), IS(τk, ω), Q(τk, ω), R(τk, ω)),
≥ E(1Ωk(ω)(k − 1 − ln k)

∧
(1k − 1 + ln k)), = (k − 1 − ln k)

∧
(1k − 1 +

ln k)E(1Ωk(ω),

≥ ϵ(k − 1− ln k)
∧

(
1

k
− 1 + ln k) (20)

where 1Ω is the indicator function of Ωk(ω). if k → ∞ then
∞ > V (S(0), E(0), IA(0), IS(0), Q(0), R(0)) +KT = ∞ becomes a contradic-
tion, thus, the only possibility is that τ∞ = ∞, which completes the proof.

2.4 Extinction of the disease
In modeling the dynamics of any infectious disease, it is important to study
conditions under which the disease will go into extinction or die out from the
population. In this section, we will show that if the white noise is sufficiently
large, then the solution of associated stochastic system (14) will become extinct
with probability one. Let us consider the following notation and results:
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⟨X(t)⟩ = 1
t

∫ t
0 X(τ)dτ

Lemma 1: (Strong law of large number, Mao (1997)) Let M = {Mt}
t ≥ 0 be continuous and real valued local martingale vanishing at t = 0 and
⟨M,M⟩ t be its quadratic variation. Then

lim
t→∞

⟨M,M⟩ t = ∞, a.s, lim
t→∞

Mt

⟨M,M⟩ t
= 0 a.s (21)

Also lim
t→∞

sup
⟨M,M⟩t

t < 0 a.s, lim
t→∞

Mt

t = 0 a.s.
Lemma 2: Let (S(t), E(t), IA(t), IS(t), Q(t), R(t)) be the solution of the
stochastic system (14) with initial value (S(0), E(0), IA(0), IS(0), Q(0), R(0)) ∈
R6
+ a.s then

lim
t→+∞

(S(t), E(t), IA(t), IS(t), Q(t), R(t))

t
= 0 (22)

Moreover,
If µ > (σ

2
1V σ2

2V σ2
3V σ2

4V σ2
5V σ2

6

2 ) then

lim
t→+∞

1
t

∫ t

0
S(τ)dW1(τ) = 0, lim

t→+∞
1
t

∫ t

0
E(τ)dW2(τ) = 0, lim

t→+∞
1
t

∫ t

0
IA(τ)dW3(τ) = 0,

lim
t→+∞

1
t

∫ t

0
IS(τ)dW4(τ) = 0, lim

t→+∞
1
t

∫ t

0
Q(τ)dW5(τ) = 0, lim

t→+∞
1
t

∫ t

0
R(τ)dW6(τ) = 0


(23)

the threshold quantity RS
0 for the stochastic system (14) can be written as

RS
1 =

(ρ1βA
π
µ
)(1−δ)α

(α+µ)(γ+µx+µ)
− δ23

2(γ+µx+µ)

RS
2 = (

ρ2βS
π
µ
)δα

(α+µ)(ω+µx+µ)
− δ24

2(ω+µx+µ)

 (24)

The following theorem gives the necessary conditions for the
extinction of infections. theorem 3 For any given initial value
(S(0), E(0), IA(0), IS(0), Q(0), R(0)) ∈ R6 the solution (S(t), E(t), IA(t),
IS(t), Q(t), R(t)) of the system in (14) has the following properties: if

a (i) σ23 >
((ρ1βA

π
µ
)(1−δ)α)2

2(α+µ)2(γ+µx+µ)
, then Covid-19 of IA goes into extinction a.s

(ii) σ24 >
((ρ2βS

π
µ
)δα)2

2(α+µ)2(ω+µx+µ)
, then Covid-19 of IS goes into extinction a.s

b (i) RS
1 < 1, then IA dies out with probability 1

(ii) RS
2 < 1, then IS dies out with probability 1

This implies that , if condition (a) and (b) hold, then
lim
t→∞

⟨logIA⟩
t < 0 and lim

t→∞
⟨logIS⟩

t < 0 a.s
That is, the disease goes into extinction with probability 1.
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Moreover,

lim
t→∞

⟨S(t)⟩ = π

µ
, lim
t→∞

⟨E(t)⟩ = 0, lim
t→∞

⟨IA(t)⟩ = 0, lim
t→∞

⟨IS(t)⟩ = 0, lim
t→∞

⟨Q(t)⟩ = 0, lim
t→∞

⟨R(t)⟩ = 0

(25)
Proof: Integrating the model in (14), we have

S(t)−S(0)
t = π − ρ1βA ⟨IA(t)S(t)⟩ − ρ2βS ⟨IS(t)S(t)⟩ − µ ⟨S(t)⟩+ δ1

t

∫ t

0
S(τ)dW1(τ),

E(t)−S(0)
t = ρ1βA ⟨IA(t)S(t)⟩+ ρ2βS ⟨IS(t)S(t)⟩ − (α + µ) ⟨E(t)⟩+ δ2

t

∫ t

0
E(τ)dW2(τ),

IA(t)−IA(0)
t = (1− δ)α ⟨E(t)⟩ − (γ + µx + µ) ⟨IA(t)⟩+ δ3

t

∫ t

0
IA(τ)dW3(τ),

IS(t)−IS(0)
t = αδ ⟨E(t)⟩ − (ω + µx + µ) ⟨IS(t)⟩+ δ4

t

∫ t

0
IS(τ)dW4(τ),

Q(t)−Q(0)
t = γ ⟨IA(t)⟩+ ω ⟨IS(t)⟩ − (θ + µx + µ) ⟨Q(t)⟩+ δ5

t

∫ t

0
Q(τ)dW5(τ),

R(t)−R(0)
t = θ ⟨Q(t)⟩+ µ ⟨R(t)⟩+ δ6

t

∫ t

0
R(τ)dW6(τ),


(26)

(a) if Ito’s formula is applied to the third equation of (14), we have

dlogIA(t) = [(1− δ)αE(t)− (γ + µx + µ)IA(t)]
1

IA
dt−

σ23
2
dt+ σ3dW3(t)

(27)
If we integrate the third equation of (26) within [0, t], then we have
logIA(t) =

∫ t
0 (1− δ)αE(τ)dτ − (γ + µx+ µ)t

∫ t
0 +

σ2
3

2 dt+
σ3

t

∫ t
0 dW3(τ) +

logIA(0)

≤
∫ t
0 (1− δ)αE(τ)dτ − (γ+µx+µ)t

∫ t
0 +

σ2
3

2 dt+
σ3

t

∫ t
0 dW3(τ) + logIA(0)

≤
∫ t
0 (

(1−δ)αρ1βA
π
µ

α+µ − σ2
3

2 )dτ − (γ + µx + µ)t+
∫ t
0 σ3dW3(τ) + logIA(0)

which can be re-written as
logIA(t) ≤ −σ2

3

2

∫ t
0 (1 − (1−δ)αρ1βA

π
µ

σ2
3(α+µ)

)2d(τ) − (γ + µx + µ)t +
∫ t
0 (1 −

(1−δ)αρ1βA
π
µ

σ2
3(α+µ)2

)2d(τ) +
∫ t
0 σ3dW3(τ) + logIA(0)

≤ −((γ + µx + µ)− ((1−δ)α)2(ρ1+βA
π
µ
)2

2σ2
3(α+µ)2

t
∫ t
0 σ3dW3(τ) + logIA

Division by t gives

logIA(t)

t
≤ −((γ+µx+µ)−

((1− δ)α)2(ρ1 + βA
π
µ)

2

2σ23(α + µ)2
+
1

t

∫ t

0

σ3dW3(τ)+
logIA(0)

t
(28)

By strong law of large number,
lim
t→∞

1
t

∫ t
0 σ3dW3(τ) = 0 a.s as σ23 >

((1−δ)α)2(ρ1+βA
π
µ

2(α+µ)2(γ+µx+µ)
,

by taking limit superior on both sides of (28), we obtain

lim
t→∞

sup
logIA(t)

t ≤ −((γ + µx + µ)− ((1−δ)α)2(ρ1+βA
π
µ
)2

2σ2
3(α+µ)

) < 0

This implies that, lim
t→∞

IA(0) = 0

In a similar manner, it can be shown that
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lim
t→∞

sup
logIS(t)

t ≤ −((ω + µx + µ)− ((δα(ρ2+βS
π
µ
))2

2σ2
3(α+µ)

) < 0

which implies that, lim
t→∞

IS(0) = 0

(b) Again if equation (27) is integrated within [0, t] and divided by t, then we
have

logIA(t)−logIA(0)
t = (1− δ)α ⟨E(t)⟩ − (γ + µx + µ)σ

2
3

2
σ3

t

∫ t

0
dW3(τ),

≤ (1−δ)α(ρ1βA
π
µ
)

(α+µ)
− (γ + µx + µ)− σ2

3

2
σ3

t

∫ t

0
dW3(τ),

= (γ + µx + µ)(
(1−δ)α(ρ1βA

π
µ
)

(α+µ)
− (γ + µx + µ− σ2

3

2(γ+µx+µ)
− 1) + σ3

t

∫ t

0
dW3(τ),

= (γ + µx + µ)(RS
1 − 1) + σ3

t

∫ t

0
dW3(τ),


(29)

Moreover, M(t) = σ3

t

∫ t
0 dW3(τ) is continuous (locally) and

M(0) = 0 From Equation ( 14) and t → ∞

lim
t→∞

sup
M(t)

t
= 0 (30)

If RS
1 < 1 then equation (29) becomes

lim
t→∞

sup
logIA(t)

t
≤ (γ + µx + µ)(RS

1 − 1) < 0 a.s (31)

Equation (31) implies

lim
t→∞

IA(t) = 0 a.s (32)

Likewise, if Ito’s formula is applied to the fourth equation of (14), then we
obtain

logIS(t)− logIS(0)

t
≤ (ω + µx + µ)(

αδ(ρ2βS
π
µ)

(α + µ)(ω + µx + µ)
−

σ24
2(ω + µx + µ)

− 1)

+
σ4
t

∫ t

0

dW4(τ) = (ω + µx + µ)(RS
2 − 1)

σ4
t

∫ t

0

dW4(τ)

(33)

Note that M(t) = σ4

t

∫ t
0 dW4(τ), is also locally “continuous martingale” and by

lemma (2)

and t → ∞, we have lim
t→∞

sup
M(t)

t
= 0 (34)

lim
t→∞

sup
logIS(t)

t
≤ (ω + µx + µ)(RS

2 − 1) < 0 a.s (35)
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Equation (35) gives

lim
t→∞

IS(t) = 0 a.s (36)

3. Results and Discussion(Numerical Simulation)

The model in (14) is simulated in this section. The numerical scheme used is
based on the Milstein’s Higher Order Method (Higham, 2001). Numerical sim-
ulation is carried out to validate theoretical results discussed earlier. The initial
conditions used for the simulation are assumed as follows: (S(0) = 0.6, E(0) =
0.2, IA(0) = 0.1, IS(0) = 0.1, Q(0) = 0.5 and R(0) = 0.1, the values of the
parameters used are given in Table 1. In Figure 2, simulations of the system in
(14) are presented when the contact rate and the stochastic white noise terms
are respectively given by βS = 0.02, βA = 0.02, σ1 = 0.2, σ2 = 0.5, σ3 =
0.35, σ4 = 0.1, σ5 = 0.2, σ6 = 0.4, and the associated stochastic reproduction
number is given by RS

0 = 0.2585 < 1. Figure 2 reveals that the disease will go
into extinction exponentially with unit probability. This also confirms the result
of Theorem 2.
In Figure 3, simulations of the system in (14) are presented, and the parame-
ter values and the white noise terms are respectively given by µ = 0.01, π =
0.9, βS = 0.09, βA = 0.08, δ = 0.05, α = 0.5, µx = 0.2, γ = 0.3, ρ1 =
0.8, ρ2 = 0.7, ω = 0.4, θ = 0.1, σ1 = 0.98, σ2 = 0.8, σ3 = 0.74, σ4 = 0.9, σ5 =
0.6, σ6 = 0.45 and the associated stochastic reproduction number is given by
RS
0 = 2.4423 > 1. Figure 3 reveals that the disease will persist.

Table 1: Parameter Values
Notation Values Reference

S 0.6 Ding et al. (2021)
E 0.2 Ding et al. (2021)
IA 0.1 Ding et al. (2021)
IS 0.1 Ding et al. (2021)
Q 0.5 Din et al. (2020)
R 0.1 Ding et al. (2021)
π 0.9 assumed
α 0.5 Din et al. (2020)
µx 0.2 Din et al. (2020)
γ 0.01 Ding et al. (2021)
ω 0.4 Assumed
δ 0.05 Ding et al. (2021)
θ 0.1 Din et al. (2020)
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Figure 2: Simulation for the stochastic model when σ1 = 0.2, σ2 = 0.5, σ3 =
0.35, σ4 = 0.1, σ5 = 0.2, σ6 = 0.4, and the associated stochastic reproduction
number is given by RS

0 = 0.2585 < 1

Figure 3: Simulation for the stochastic model when σ1 = 0.98, σ2 = 0.8, σ3 =
0.74, σ4=0.9, σ5 = 0.6, σ6 = 0.45 and the associated stochastic reproduction
number is given by RS

0 = 2.4423 > 1.

The simulation of the stochastic model (14) is displayed in Figures 1 and 2
in order to evaluate the effects of stochastic white noise intensities. Increasing
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the white noise intensities σ1, σ2, σ3, σ4, σ5, and σ6 are observed to accelerate
the process of extinction. Additionally, it demonstrates that persistent efforts to
increase stochastic disruptions through quarantine could significantly decrease
the movement and spread of COVID-19.

4. Conclusion

In this work, we have presented a stochastic model for COVID-19. The exis-
tence and the uniqueness of global solution of the stochastic model was ob-
tained using the Lyapunov function. Numerical simulations were carried out to
validate theoretical results on extinction and persistence of COVID-19 within
the population. We investigated the situations when the stochastic associated
reproduction number is below one and also when it is greater than one. The
associated stochastic reproduction number is given as RS

0 = 0.2585 < 1 which
shows that the disease will go into extinction exponentially with unit probabil-
ity. This is presented in figure 2. It was also observed that the stochastic system
fluctuates around the endemic equilibrium. When RS

0 = 2.4423 > 1, the disease
persists within the population, but figure 3 shows that there is a possibility for
the disease to go into extinction.
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lévy noise. Chaos: An Interdisciplinary Journal of Nonlinear Science, 31(4), 043132.

Higham, D. J. (2001). An algorithmic introduction to numerical simulation of stochastic
differential equations. SIAM review, 43(3), 525–546.

Lai, C.-C., Shih, T.-P., Ko, W.-C., Tang, H.-J., and Hsueh, P.-R. (2020). Severe acute res-
piratory syndrome coronavirus 2 (sars-cov-2) and coronavirus disease-2019 (covid-
19): The epidemic and the challenges. International journal of antimicrobial agents,
55(3), 105924.

Mao, X. (1997). Stochastic differential equations and their applications, horwood, chich-
ester, 1997. MR1475218.

Perko, L. (2013). Differential equations and dynamical systems (Volume 7). Springer Sci-
ence & Business Media.

Wu, Z., and McGoogan, J. M. (2020). Characteristics of and important lessons from the
coronavirus disease 2019 (covid-19) outbreak in china: Summary of a report of 72
314 cases from the chinese center for disease control and prevention. jama, 323(13),
1239–1242.

http://www.bjs-uniben.org/


