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Abstract. This paper presents a model for the Corona-Virus (COVID-19) disease tak-
ing into account random perturbations. The proposed model is composed of six different
classes namely the Susceptible population, the Exposed population, the Asymptomatic in-
fectious population, the Symptomatic Infectious population, the Quarantined population
and the Recovered population (SEI4IsQR). Using appropriately formulated stochastic
Lyapunov functions, we established sufficient conditions for the existence and unique-
ness of the positive solutions to the model. The condition for the extinction of the dis-
ease is also established. Numerical simulations are applied to illustrate the analytical re-
sults obtained herein.The reproduction number was obtained as R; = 0.2585 < 1 and
RS = 2.4423 > 1 which show that the stability analysis of the equilibrium point is lo-
cally asymptotically stable whenever the basic reproduction number R5 < 1 and unstable
whenever R5 > 1.
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1. Introduction

The 2019 novel coronavirus has been known to the virologist’s community as
Severe Acute Respiratory Syndrome Coronavirus-2 (SARS-CoV-2) (Lai et al.,
2020). Corona virus is a family of many diverse and numerous viruses that can
infect both humans and animals that can cause a number of diseases (Mao,
1997). The name coronavirus, which means “crown virus” is related to the fact
that all viruses of this family have a crown-like shape when observed under
an electron microscope. The epidemic of novel coronavirus (COVID-19) in-
fections that began in China in late 2019 has rapidly grown and cases have
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been reported worldwide. The virus appears to be transferred mostly through
narrow respiratory droplets by coughing, sneezing, or people’s interaction in
close proximity (usually less than one metre) with each other for a certain time
frame. These droplets can further be inhaled or can stay on the surfaces that
came in contact with the infected person that can now cause infection in others
by touching their nose, mouth or eyes. The virus possesses the ability to survive
on various surfaces commencing several hours (e.g. copper, cardboard), up to a
few days (e.g. plastic and stainless steel). Nonetheless, the quantity of the viable
virus certainly decays over a time span and might not be present in sufficient
quantity for causing the infection (Din et al., 2020). The COVID-19 pandemic
is considered as the biggest global threat worldwide because of thousands of
confirmed infections, accompanied by thousands of deaths over the world. The
only way to stop the spread of this disease is to quarantine or isolate the initially
infected population as shown by the Chinese Government and adhering to the
safety guidelines of World Health Organisation (WHQO). Most of the real world
phenomenon are not simply deterministic, because in deterministic models, the
output of the model is fully determined by the parameter values and the initial
conditions. Stochastic models possess some inherent randomness. The same set
of parameter values and initial conditions will lead to an ensemble of different
outputs. A stochastic model includes a random component that uses a distri-
bution as one of the inputs, and results in a distribution for the output. These
distributions may reflect the uncertainty in what the input should be (e.g. a de-
terministic input plus noise), or may reflect a random process (i.e. a stochastic
input) (Perko, 2013, Wu and McGoogaan, 2020). In this paper, we shall propose
a stochastic epidemic model of COVID-19 virus with a varying population en-
vironment and categorize the total population into six different classes. The first
class is the susceptible individuals with white noise. The second class includes
the exposed individual with white noise. The third is the asymptomatic infected
individuals with white noise. The fourth is the symptomatic infected individual
with white nose. The fifth class consists of the quarantine individuals with white
noise. The sixth class consists of the recovered individuals with white noise. The
existence and uniqueness of the positive solution of the proposed model and the
disease’ extinction for the COVID-19 are carefully discussed. Furthermore, we
simulate the solution of the proposed model by using the higher-order stochastic
Milstein method, (Higham, 2001).

2. Materials and Method

2.1 Preliminaries

Definitions
Mao (1997) (:) The triple (S2, f, P) is called complete probability space if f
contains all subsets GG of €2 with P-outer measure zero, that i1s, with

P« (G)inf P(F);F € f,GCF =0 (1)

The subsets F' of the set {2 which belong to F' are called F'-measurable sets.
These sets are also called events. For instance, P(F') = “The probability that
the event F' occurs”. Particularly, if P(F') = 1, then we say that “F occurs with
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probability 17 or “almost surely (a.s)”

(17) Let (€2, f, P) be a complete probability space. A random variable X is an f
measurable function X : {2 — R". Every random variable induces a probability
measure on R".

(731) A stochastic process defined on a probability space (€2, f, P) is a parame-
terized collection of random variables X;t € T' with index (or parameter) space
T and assuming values in R". note that for each ¢t € T, fixed, we have a random
variable X; : w — R";w € (). On the other hand, fixing w € () we have the sam-
ple path/trajectory or a realization of the stochastic process: X; :t — R";t € T
(iv) Let (€2, f, P) be a probability space. If X is a real valued random variable
and 1s integrable with respect to the probability measure P, then the expectation
of X (with respect to P) is defined as:

E(X)= /X(w)dP(w),w €N (2)

(v) let X;t € T be a real-valued stochastic process with discrete or con-
tinuous index set 7. then X;t € T is called a Martingale if expectation,
E[|X,|] < oo, V te T andif the conditional expectation is given by

E[Xin+ 1| X1 =21, X432 = 22, ..., Xyn = xn] = zn (3)

Equivalently, F[Xyn + 1|fin] = an

(vi) Let (2, f, P) be a probability space with filtration {f:},,. A one di-
mensional Brownian motion is a real-valued continuous { f; }-adapted process
{B:}+>, with the following properties:

(1) Bp = 0a.s

(1) for 0 < S <t < o0, the increment By — B, is normally distributed with
mean zero and variance t — s.

(111) for 0 < s < t < oo, the increment B; — By 1s independent of f

(iv) for almost every w € (2, the Brownian sample path B(w) is no where
differentiable.

(v) {Bt}+ > 01is a continuous square-integrable Martingale and its quadratic
variation (B;B), = t.

The following notations are introduced

a\/ b = the maximum of @ and b

a /\ b = the minimum of @ and b

R = the set of all non-negative real numbers , that is R = [0, 00)

R% = The d-dimensional Euclidean space.

Ri = {z = (21,...,29) € R:2; > 0,1 <i<d},

LP([a,b]; R%)is the family of R%-valued f;-adapted processes {f(t)}q<¢<p such
that

b
/ Pt < )
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C? (R x R% R ) is the family of all non-negative real- valued functions V' (¢, z)

defined on R, R? such that they are twice continuously differentiable in = and
once in ¢.

Let z(t) be a one-dimensional Ito process on ¢ > 0 with the stochastic differen-
tial

dx(t) = f(t,x(t))dt + g(t,2(t))d B, 2(0) = o (5)

where f € L' (R, x R;R)and g € L? (R, x R; R).
LetV € C? (Ry x R; R). Then V(t,x(t)) is an Ito process with the stochastic
differential given by:

dV (t,z(t)) =[Vi(t,z(t)) + Va(t, z(t)) f(t, z(t)) + %Vm(t, x(1)g?(t, z(t))]dt

+ Vx(t7 x(t))g(tv x(t))dBt
(6)

Let z(t) be a d-dimensional Ito process on ¢t > 0 with the stochastic differential
du(t) = f(t,2(8))dt + g(t, 2(t))d By, (0) = o @

where f € LY(R, x R;R) and g € L?(R, x R%; R™*™).
Let V € C?(Ry x R% Ry). Then V(t,z(t)) is again an Ito process with the
stochastic differential given by:

dV(t, x(t)) =[Vi(t, x(t)) + Va(t, () f (£, (1)) + %tmce(gT(t, (1)) Vi (8, (1)) g (2, (1)) 1dt

+ Vx (tv :L“(t))g(t, :E(t))dBt
(8)

The infinitesimal generator L associated with system (6) is defined by Mao
(1997): as:

1< o2
+Zfz$t 52 ]]m ©)

Theorem according to Mao (1997), (i) if L acts on a function V € C?(R, x
R% Ry).
LV = [Vi(t, (1)) + Valt, 2()) (0, 2(0)) + stracel” (¢, 2(6) Vee 1, 2(0)g(t, 2(t))]dt - (10)

2
where V; = at Ve = (QX ,395 ) Vix = (afing)dxd-

Again, the one dimensional Ito’s lemma in Mao (1997) can be re-written
as:

AV (z(t)) = LV (t, (t))dt + Vy(t, z(t))g(t, 2(t))dB; (11)
http://www.bjs-uniben.org/
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(i) let f, g € MP([a,b]; R?) and let o, 3 be two real numbers. Then
(i) fab f (t)dB(t) is f; - measurable
(i) E [} f(t)d ) =0
(iii) E [, |f(t)dB(t Efb |f(t) th
(iv) f, las(t) + ﬁg =a [, f(t)dB(t) + 8 [, g(t)dB(t)

(24) Consider the stochastlc differential equation

dx(t) = f(t,x(t))dt + g(t,z(t))dBy, x(tg) = xo,t0 <t < T, (12)

Assume that there exists two positive constants K1 and K> such that for all
z,y € R4t € [t, T

e (Lipschitz condition) :

Vo wy € RLEE [to, T], | f(a,t)— f(t,y)PV]g(t, 2)—g(t,y)|* < Kile—y|
e (Linear growth condition):

Vo (@) € [to, TIXRY, | f(t,2)PV]g(t. »)B(1 + |2f?).

Then there exists a unique local solution.

2.2 Model Formulation

In this section, we formulate a stochastic model to study the transmission
dynamics of COVID-19. According to the characteristics of the disease,
we propose a Susceptible-Exposed-Asymptomatic Infectious-Symptomatic
Infectious-Quarantined-Removed epidemic model. We take into consideration
the variations of the population environment in order to study the dynamics
of COVID-19, in particular its long-term behaviour. Some of the assumptions
underlying the formulation of the model are:

1 The total population at any time ¢ is denoted by N (¢) and it is classified
into six exclusive groups of individuals: the Susceptible class S(t), the
Exposed class F(t), the Asymptomatic infectious class 4(t), the Symp-
tomatic infectious class /g (), the Quarantine class ()(t), and the Recov-
ered R(t). Thatis, S(t)+ E(t)+1a(t)+1s(t)+Q(t)+ R(t) = N(t) which
is changing with time ¢.

2 The state variables and parameters included in the model are assumed to

be non-negative.

The infected individuals move to the quarantined class

Once the infection is confirmed, then the quarantined will go back to the

infected compartment.

=~ W

In the light of the assumptions, we obtain the deterministic model:
http://www.bjs-uniben.org/
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\

B =71 — p1BalaS — paBslsS — pS
U = p1BalaS + p2BslsS — (o + p)E
U= (1= 0)aE — (v + po + ) 1a )
Us — adE — (w+ pg + p)Is

9 — NI+ wls — (04 pe + 1)@

W —6Q — Rk J

B

Figure 1: The schematic diagram of the SE1415Q) R Model

where 7 is the recruitment rate into the susceptible class and p, is the natural
death rate, [ is the force of infection, p; and po are the effective contact rate
between the symptomatic and asymptomatic individuals respectively, 54 and
Bg are the transmission probabilities of the virus from infectious individuals to
the susceptible class, j, is death due to COVID-19, (1 — §)« the proportion of
individuals moving into the asymptomatic class, «d the rate at which the indi-
viduals move into the symptomatic class, ~ the rate at which the asymptomatic
class move into the quarantine class, w is the rate at which the symptomatic
class are quarantined and 6 is the recovery rate.

From the deterministic model in (13), we then formulate the stochastic model:

dS(t) = (mr — p1Bala(t)S(t) — p2Bsls(t)S(t) — pS(t))dt + o1S(t)dWa(t) )
dE(t) = (p1Bala(t)S(t) + p2Bsls(t)S(t) — (a+ p)E(t))dt + o2 E(t)dW)(t)
ATa(t) = (1= )aB(t) = (7 + o + ) Ta(0))dt + o T4 (D)W (1) S,
dIs(t) = (WWE(t) — (w + g + ) Is(t))dt + o4l (t)dWa(t)
dQ(t) = (V1a(t) + wls(t) = (0 + pz + p)Q(t))dt + o5Q(t)dW5(t)
dR(t) = (0Q(t) — pR(1))dt + o6 R(t)dW(t) )
where Wi (t), Wa(t ) Wis(t), Wa(t), Ws(t), We(t) are independent standard
Brownian motions, and o1, o9, 03, 04, 05, 0g as the intensities of the standard
Gaussian white noises respectively.
The terms alS(t)dI/Vl(t), JQE(t)dWQ(t), 03]A(t)dW3(t), J4IS(t)dW4(t),
o5Q(t)dWs(t), o6 R(t)dWs(t) are the interactions between the individuals and
http://www.bjs-uniben.org/
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the environment. The initial conditions are given by
(S(0), E(0), 14(0), I5(0), Q(0), R(0)) € RY.

2.3 Existence and Uniqueness of the Solution of Stochastic Model

This section provides the existence and uniqueness of solution of the proposed
stochastic model in (14) using the Lyapunov method.

Theorem 2:

For any given initial values Xy = (S(0), E(0), 14(0,)Ig(0), Q(0), ( )) €D
there is a unique solution X; = X(t) = (S(¢), £(¢), 1a(t), Is(t), Q(t), R(t))
for ¢t > 0, which will remain in D with probability one. That is,
P(5(t), E(t), IA( ), 15(t),Q(t), R(t)) € D forallt > 0.

proof:
For any given initial value Xy = (S5(0), £(0),14(0),15(0),Q(0), R(0)) €
D there is a unique local solution X; = X(t) =

(S(t), E(t), 14(t),Is(t),Q(t), R(t)) for t € [0,7.), where 7. is the explo-
sion time. To show that the solution is positive and exist globally, it is essential
to establish that 7. = +oo almost surely (a.s.). Suppose that ky > 0 be
sufficiently large such that S(0), £(0),14(0,)Ig(0),Q(0), R(0) stays within
[kio, ko] . Then, each k > kg, define the stopping time

T = inf{t € [0,7) : S(t) ¢ (k,k) or E(t) = (%,k’) or I(t) ¢ (%,k) or
Is(t) ¢ (3. k) or Q(t) & (1. k) or R(t) ¢ (1. k)}

where mf (/5 = oo and ¢ denotes the empty set. Obviously, 7; is increasing as
k — oo, thus 7o, = klim Tk SO, Too < T3 a.S. If we prove that 7., = oo a.s then

%
= oo and ((S(1), E(t), 1a(t), Is(t), Q(t), R(t)) € D a.s forall ¢ > 0. Assume
that tso < 00, then there exist a pair of constants 7 > 0 and e € (0, 1) such that
P{7o < T} > €. Thus there is an integer k; > kg such that

Py <T >e€ for all k>k (15)

Define C? function V; : R} — Ry by

Vi(S,B,14,15,Q,R) =(S —1—1nS)+ (E—1-InE)+ (14— 1 —Inly)+ (Is — 1 — InIg)
+(Q@—-1-InQ)+(R—1—-InR)
(16)

Applying Ito’s Lemma on (16) gives
dVi = (1 —L)ds + 112(dS) +(1- l)dE + %E (dE) (1- Ii)dIA +
%i%u P+ (1= ) dls+ 32 (dls)P+(1- 4)dQ+3 5"+ (1— §)dR+ 14 (dR)?

1— 3)(m— p18alaS — p255155 uS)dt + (1 — —)alS(t)dI/Vl( )+ ; 2dt+
(1 — £)(P1BalaS + pafsIsS — (a+ p)E)dt + (1 — 5)oa E(t)dWa(t) + %dH
(1= )1 =0)aE = (v + pe + p) La)dt + (1 — 1)o3la(t)dW: ( ) + %dH
(1= (@b E — (w + g + p)Ig)dt + (1 — )0415( )AW4(t) + 30 gdt+

http://www.bjs- unlben org/
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(1-— é)(«ﬂA +wlg — (0 4 pz + p)Q)dt + (1 — é)J5Q(t)dW5(t) + Loldt+
(1— )(6Q — pR)dt + (1 — £)o6Q()dWe(t) + Sogdt

Which simplifies to
dVi = [(1 = §)(m = p1BalaS — p2BslsS — pS) + 501+

(1- }3)(,015/1[,45 + p2BslsS — (a+ p)E) + 303+
L= (1 = 8)aB — (7 + pio + i) La) + 503+
1= £)(abE — (w + po + p)Is) + 305+

)(La +wls = (0 + pa + 1) Q) + 305+

7)(0Q — uR) + 508)dt+

1(S = 1)dWy + o2(E — 1)dWa + 03(14 — 1)dW3 + o4(Ig — 1)dWy + 05(Q —
)dW5 + 06(R — 1)dWp)

!33 H@IH

(
(
(1—
(1-
(o
1

and hence we obtain that
dVp = LVidt + ((71(5 — 1)dW1 + OQ(E — l)dWQ + UB(IA — 1)dW3 + U4([g —
1)dW4 + O5(Q — 1)dW5 + OG(R — l)dW(;)

where
LV = (1 — %)(7‘( — p18414S — p2BslsS — NS) + %J%—'—
(1= £)(p18alaS + pafslsS — (a + “)E) + 305+

(1= 7)1 =)k — (7 + pz + M)IA) + 305+
(1- é)(’Y[A +wlg — (9 + po + M)Q) + 305+
(1 - %)(0Q — pR) + 503

IVi=m—pS—puk —ply — pls — pQ — pR )
+(=F + p1Bala+ poBsls + p) + (— 20545 — 220888 4o 4y 4 (=45
HOE oy g+ ) + (—9E A+ w g+ )

+(_% — % 10+ pg + ) + (__Q +u) + Uf+o§+a§42—02+a§+ag (17)
IVi <7 —pN = pa(Ia+Is+ Q) + p+ (o +p) + (v + pz + 1) + (W + pa + 1)
+(0 + pe + ) + pp 4 (p1Bala + p2Bsls)+

2, 2, 2, 2, 2, 2
oitosto3+oitos5+0g

J

2 2 2 2 2 2
LVi <7+ 6+ 3 + p18ala+ pafisls + 7 +w + 0 + o T 0 O Lo 1o

Notethat S+ E 4+ Ix+ g+ Q + R < %,then
2 2 2 2 2 2
LVi < m46u+3pg+y+wt+0+atpifalatprfsle+TrRro0utntontos . |
Thus we have
dVi =Kdt + (01(S — 1)dW1 + oo(E — 1)dWs + 03(14 — 1)dW3 + 04(Ig — 1)dWy4 + 05(Q — 1)dW5
+ JG(R — 1)dW6)

(18)
http://www.bjs-uniben.org/
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Integrating both sides of (18) from 0 to 73, A 7', we obtain

ST QA (S(r), B(r), La(r), Is(r), Q(r), R(r))

< [PAT Kar + [T N (01(S(r) = DAWL(r) + o2 (E(r) — DdWa(r) + o3(La(r) — 1)dWa(r)+
o4(Is(r) — 1)dWa(r) + o5(Q(r) — 1)dWs(r) + o6(R(r) — 1)dWs(r))

)

(
(19)

Taking expectation of both sides of (19) and Recalling £ fo t)dB(t) = 0, we

have

EVi(S(re AT), E(me NT), La(mi NT), Is(7x /\T) (Tk: AT), R(r AT))

< VA(S(0), E(0), 14(0), I5(0), Q(0), R(0) + E [N Kar,

EVi(S(tix NT), E(m NT), IA(Tk/\T)aI (Tkz/\T) Qe NT), R(m NT))
< Vi(5(0), £(0), 14(0), IS( ), Q(0), R(0) +

Let Qp = {7, < T} for all £ > ky then by (3) we have P(€)) > ¢

Note that for every w € €2, we have at least S(7,w) or E(7g,w) or I 4(7x,w) or
Ig(1p,w) or Q(7x,w) or R(1y,w) which is equivalent to

k or %, thus V(S(7p,w) or E(7p,w) or [x(7p,w) or Ig(7g,w) or Q(7g,w) or
R(7;,w) is no less than

k—1-Inkort—1—Ing=4+—1+Ink

Hence,
V(S(g,w), E(11,w), La(7,w), Is(Th, w), Q(1g, w), R(1p,w)) > (b — 1 —
Ink) N( — 1+ Ink)

Then it follows that,

V(5(0), E(0), 14(0), I5(0), Q(0), R(0) + KT
> EQVI(S(m AT), E(rg NT), La(me ANT), Is(mi AT), Q(re NT), R(7; AT)),
= E(1Q4(w)V1(S(m, w), B(1,w), La(7,w), Is(Th, w), Q(T, w), R(7p, w

> EAQw)(k — 1 —Imk)A(z — 1+ k), = (k—1—-Ink)A(t — 1 +
Ink)E(1Q(w),

de—1—mm/v%—1+mk) (20)

where 1€ is the indicator function of Qi (w). if £ — oo then
oo > V(5(0), E(0), 14(0), I5(0), Q(0), R(0)) + KT = oo becomes a contradic-
tion, thus, the only possibility is that 7., = co, which completes the proof.

2.4 Extinction of the disease

In modeling the dynamics of any infectious disease, it is important to study
conditions under which the disease will go into extinction or die out from the
population. In this section, we will show that if the white noise is sufficiently
large, then the solution of associated stochastic system (14) will become extinct
with probability one. Let us consider the following notation and results:

http://www.bjs-uniben.org/
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Xt)>:%f(fX7'd7'

Lemma 1: (Strong law of large number, Mao (1997)) Let M = {M;}
t > 0 be continuous and real valued local martingale vanishing at ¢ = 0 and
(M, M) t be its quadratic variation. Then
M,
lim (M, M)t =c0,a.s, lim i ]\t@ =0 a.s (21)
Also lim supM < 0 a.s, hm % =0 a.s.

t—00

Lemma 2: Let (S(t), E(¢), IA() Is(t),Q(t), R(t)) be the solution of the
stochastic system (14) with initial value (S(0), £(0), 14(0), Is(0), Q(0), R(0)) €

RS a.s then

(S(t)7 E(t)a IA(t)v IS(t)v Q(t)a R(t))

lim =0 (22)
t——+o00 t
Moreover,
If 1o > (UfVU§VJ§VUiVJ§VJ§) then
t_lgrnoo—fo T)dWi (1) =0, _lgrnOO fo T)dWs(T) =0, hm tfo TA(T)dW3(T) =0,
tl&gloo%fg Is(T)dWy(T) =0, hm tfo T)dWs(T) =0, hm —fo T)dWe(T) =0
(23)
the threshold quantity Rbg for the stochastic system (14) can be written as
RS — (p1fag)(1=b)ar 52
RS . ( pQ/BS%)(Sa . 52
T Matp)(wtpetp) 2wt tp)

The following theorem gives the necessary conditions for the
extinction of infections. theorem 3 For any given initial value
(5(0), E(0),14(0),I5(0),Q(0), R(0)) € RS the solution (S(t), E(t), I4(t),
Is(t), Q(t), R(t)) of the system in (14) has the following properties: if

a (1) a§ > ;ng:)giitj)i), then Covid-19 of 14 goes into extinction a.s

) (p2557)00)?
() 0F > s o

then Covid-19 of /g goes into extinction a.s

b (1) Rf < 1, then I 4 dies out with probability 1
(ii) Ry < 1, then Ig dies out with probability 1
This implies that , if condition (a) and (b) hold, then

75lim % < 0and tlim UOi Is) « 0 a.s
— 00 — 00

That is, the disease goes into extinction with probability 1.
http://www.bjs-uniben.org/
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Moreover,

lim (S(t)) = E, lim (E(t)) =0, lim (I4(¢)) =0, lim (Ig(¢)) =0, lim (Q(t)) = O,tliglo (R(t)) =0

t—00 M t—oo t—o00 t—00 t—00
(25)

Proof: Integrating the model in (14), we have
SOSO) — ;v — B4 (Ta(1)S(8)) — pabBis {Is(8)S(8)) — u (S(8)) + & [ S(r)dWi(r),
BOZSO) — 1 B (La(1)S(1)) + paBs (Ls(D)S () — (a4 ) (E() + & [y B(r)dWa(r),
LT8O = (1 = §)a (E(t)) — (7 + pra + 1) (La(0)) + & [ Ta(r)dWs(7),
LWTsO0) = o5 (B(t)) — (w + o+ 1) s (1)) + 2 [ Ts(r)dWa(r),
QO=QO) — o (74(1)) +w (Ts(8)) — (0 + po + 1) (Q(E) + & [ Q(r)dWs(7),
ROZRO) — Q1)) + 1 (R(1)) + % [y R(r)dW(r

26)
(a) if Ito’s formula is applied to the third equation of (14), we have

1 a§
—dt — =dt + o3dW3(t)
i 2
(27)
If we integrate the third equation of (26) within [0, ¢], then we have
logIA(t) fo (1—=0)aE(T)dr — (v + piz + p)t fg +5dt + % f(f dWs(T) +

dlogl(t) = [(1 = 0)aE(t) — (v + px + 1) La(t)]

logI14(0)
< [ 11_5 a?( )dT— (7 + o + )t [ +%dt + % [ dWs(7) + logL4(0)
apy
< fO a—:u . __)dT (7 + e + 1) t+f0 osdW3(7) + logl 4(0)
which can be re- ertten as
03 (1=6)ap1fBa’ t
logly(t) < fo W) d(t) — (v + pe + )t + [y (1
(1 5)aP15AH
W)Qd + fO O'3dW3( ) + lOg[A(O)
(1=0)a)*(p1+Ba%)
—((y + pz + ) — 252 (at )2 tfo o3dW3(T) + logla
Division by ¢ gives
logla(t) (1 =0)a)* (g +Ba%)* 1 [ log14(0)
" < —((v+pe+p)— 20?%(& ) +—/O osdWs(T)+ " (28)

By strong law of large number,
(1=0)a)*(pr+BaZ
2(atp)? (- pe )
by taking limit superior on both sides of (28), we obtain
logIA( ) B o ((1*5)04)2(P1+/8A%)2
Jim sup (v + pa + 1) oot )
This 1mphes that, tlim 14(0)=0
— 00
In a similar manner, it can be shown that
http://www.bjs-uniben.org/

Jlim L[ o3dWs(r) = 0 a.s as 03 >
o

<0
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((504(/?24‘/35%))2
205 (1)

lim supM < —((w+ pg + ) —

t—00 t -

which implies that, lim Ig(0) =0
t—o00

) <0

(b) Again if equation (27) is integrated within [0, ¢] and divided by ¢, then we
have

\

loglaltltogTaO) — (1 — §)a (B(t)) — (v + pa + 1) G2 [T dW3(7),

(1-8)a(p1Ba %)

2 t
< i =~ (ke ) = FF [y dWs(7),

(1=0)a(p1Ba) o3 o3 [t
= (V4 e + 1) (g — (Ve = gy — D+ B [y AWs(7),

a3 t
= (v + e + p)(RY = 1) + G [ dWs(7),

29)
Moreover, M (t) = % Ot dW3(7) is continuous (locally) and
M (0) = 0 From Equation ( 14) and t — oo
Mt
lim sup ®) =0 (30)
t—00
If RY < 1 then equation (29) becomes
logla(t
lim sup o9Lat) < (Y4 pe+ )Ry —1) <0 as (31)
t—00
Equation (31) implies
lim I4(¢) =0 a.s (32)

t—00

Likewise, if Ito’s formula is applied to the fourth equation of (14), then we
obtain

loglg(t) — logIs(0)
t

@5(02582) o2
S R e e Sk ey R

t , (33)
L2 AWy(1) = (W + pz + p) (RS — 1)%/ dW(7)
t Jo t Jo

Note that M (t) = F* fot dWy(T), is also locally “continuous martingale” and by
lemma (2)

M (t
and t— oo, we have lim sup ®) =0 (34)
t—r00
loglg(t
Jim sup 95 e+ RS —1) <0 as (35)
—00
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Equation (35) gives

lim Ig(t) =0 a.s (36)

t—o00

3. Results and Discussion(Numerical Simulation)

The model in (14) is simulated in this section. The numerical scheme used is
based on the Milstein’s Higher Order Method (Higham, 2001). Numerical sim-
ulation is carried out to validate theoretical results discussed earlier. The initial
conditions used for the simulation are assumed as follows: (S(0) = 0.6, £(0) =
0.2,74(0) = 0.1,Ig(0) = 0.1,Q(0) = 0.5 and R(0) = 0.1, the values of the
parameters used are given in Table 1. In Figure 2, simulations of the system in
(14) are presented when the contact rate and the stochastic white noise terms
are respectively given by g = 0.02,84 = 0.02,01 = 0.2,02 = 0.5,03 =
0.35,04 = 0.1,05 = 0.2,06 = 0.4, and the associated stochastic reproduction
number is given by Rg = 0.2585 < 1. Figure 2 reveals that the disease will go
into extinction exponentially with unit probability. This also confirms the result
of Theorem 2.

In Figure 3, simulations of the system in (14) are presented, and the parame-
ter values and the white noise terms are respectively given by p = 0.01,7 =
09,65 = 0.09,64 = 0.08,0 = 0.05,a = 0.5,u, = 0.2,y = 0.3,p1
0.8,p2 =0.7,w =04,0 =0.1,01 = 0.98,00 = 08,03 = 0.74,04 = 0.9, 05
0.6,06 = 0.45 and the associated stochastic reproduction number is given by
Rg = 2.4423 > 1. Figure 3 reveals that the disease will persist.

Table 1: Parameter Values

Notation | Values Reference
S 0.6 | Ding et al. (2021)
E 0.2 | Ding et al. (2021)
14 0.1 |Ding et al. (2021)
Is 0.1 | Ding et al. (2021)
Q 0.5 Din et al. (2020)
R 0.1 |Dingetal. (2021)
7 0.9 assumed
Q 0.5 | Din et al. (2020)
by 0.2 Din et al. (2020)
v 0.01 | Ding et al. (2021)
w 0.4 Assumed
) 0.05 | Ding et al. (2021)
0 0.1 Din et al. (2020)
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Figure 2: Simulation for the stochastic model when o1 = 0.2,09 = 0.5,03 =

0.35,04 = 0.1,05 =

number is given by Rg =0.2585 < 1
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Figure 3: Simulation for the stochastic model when o1 = 0.98,02 = 0.8, 03 =
0.74,04-0.9,05 = 0.6,06 = 0.45 and the associated stochastic reproduction

number is given by Rg = 2.4423 > 1.

The simulation of the stochastic model (14) is displayed in Figures 1 and 2
in order to evaluate the effects of stochastic white noise intensities. Increasing
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the white noise intensities o1, 09, 03, 04, 05, and og are observed to accelerate
the process of extinction. Additionally, it demonstrates that persistent efforts to
increase stochastic disruptions through quarantine could significantly decrease
the movement and spread of COVID-19.

4. Conclusion

In this work, we have presented a stochastic model for COVID-19. The exis-
tence and the uniqueness of global solution of the stochastic model was ob-
tained using the Lyapunov function. Numerical simulations were carried out to
validate theoretical results on extinction and persistence of COVID-19 within
the population. We investigated the situations when the stochastic associated
reproduction number is below one and also when it is greater than one. The

associated stochastic reproduction number is given as Rg = 0.2585 < 1 which
shows that the disease will go into extinction exponentially with unit probabil-
ity. This is presented in figure 2. It was also observed that the stochastic system

fluctuates around the endemic equilibrium. When Rg = 2.4423 > 1, the disease
persists within the population, but figure 3 shows that there is a possibility for
the disease to go into extinction.

References

Din, A., Khan, A., and Baleanu, D. (2020). Stationary distribution and extinction of

stochastic coronavirus (covid-19) epidemic model. Chaos, Solitons Fractals, 139,
110036.
Ding, Y., Fu, Y., and Kang, Y. (2021). Stochastic analysis of covid-19 by a seir model with

Iévy noise. Chaos: An Interdisciplinary Journal of Nonlinear Science, 31(4), 043132.

Higham, D. J. (2001). An algorithmic introduction to numerical simulation of stochastic
differential equations. STAM review, 43(3), 525-546.

Lai, C.-C., Shih, T.-P., Ko, W.-C., Tang, H.-J., and Hsueh, P.-R. (2020). Severe acute res-
piratory syndrome coronavirus 2 (sars-cov-2) and coronavirus disease-2019 (covid-
19): The epidemic and the challenges. International journal of antimicrobial agents,
55(3), 105924.

Mao, X. (1997). Stochastic differential equations and their applications, horwood, chich-
ester, 1997. MR1475218.

Perko, L. (2013). Differential equations and dynamical systems (Volume 7). Springer Sci-
ence & Business Media.

Wu, Z., and McGoogan, J. M. (2020). Characteristics of and important lessons from the
coronavirus disease 2019 (covid-19) outbreak in china: Summary of a report of 72
314 cases from the chinese center for disease control and prevention. jama, 323(13),
1239-1242.

http://www.bjs-uniben.org/




