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Abstract. In recent years, a number of studies have demonstrated the efficiency, adapt-
ability and accuracy of fuzzy time series forecasting models in the quest to improve the
predictive power of the extant models. However, achievement of prediction accuracy is
still one of the major challenges of these techniques. In this work, we proposed a model
that combines the basic concepts of Fuzzy Autoregressive Integrated Moving Average
(FARIMA) and Fuzzy Regression (FR) models which help to enhance prediction accu-
racy by narrowing down the projection bias problems specifically associated with the
FARIMA model’s interval of possibility. The method is tested on real data obtained from
the literature. In most of the instances, the experimental results indicated that the proposed
method achieves a narrower interval of possibility compared to the existing methods in
the literature.
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1. Introduction

The quest of the behaviour of a variable in terms of its historical trends is quite
an important facet in the viability of any reasonable decision making and such
processes are regarded as forecasting. The forecasting concept is one of the
most important topics of research that has attracted the concern of many re-
searchers and scientists (Alyousifi et al., 2021). Forecasting activities play an
indisputably pivotal role in our daily life since curiosity is human’s instinct
(Dong and Ma, 2021). A significant part of scientific applications requires the
forecasting of natural, social and economic processes. Hence, there is an ex-
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tensive literature on forecasting methods and models (Silva, 2019). In modern
times, the importance of forecasting in various spheres of human activity does
not require additional substantiation and proof (Gorbatiuk et al., 2021). In ad-
dition, Panigrahi and Behera (2020) noted that accurate forecast of any event
or phenomenon significantly can influence the decision of individuals as well
as organizations. Therefore, a good forecasting method is an essential tool for
decision-making.
In the literature, many authors applied different forecasting techniques in the
course of achieving accurate forecasting. The notable technique among others
include time series forecasting (TSF). The TSF is a commonly studied forecast-
ing method that has many applications throughout various fields. The applica-
tions of time series forecasting in the current available literature are wide and
cut across almost all aspects of human endeavours. Schools enrolments, stock
index, market assets, economic indicators, exchange rates, electric loads, tem-
perature and tourism forecasting to mention a few amongst many notable areas
that were subjected to time series applications over the years.
The time series forecasting methods has been undergoing evolutionary transi-
tions over the years. Tak (2022), reported that there is a great deal of effort to
improve the predictive power of extant models. In the early seventies, Box and
Jenkins (1970) proposed an important improvement that turn around the time
series forecasting method. Their method is known as Autoregressive Integrated
Moving Average (ARIMA) model. It is one of the most result oriented, well-
known and widely used time series models. The method has proved to be more
applicable to time series forecasting problems (Torbat et al., 2018). The ARIMA
model assumes that the future values of a time series model have a clear and def-
inite functional relationship with current, past values and white noise (Wang et
al., 2009). It has the advantages of fast modelling and prediction, and is widely
used in the prediction of time series data (Du et al., 2020).
The application of the ARIMA model in some real life situations is constrained
due to underlying model assumptions. One such assumption is the linear rela-
tionship between the future, current and past values of a time series. Added to
this, is the requirement of large number of historical data, at least fifty, and
preferably above one-hundred observations (Torbat et al., 2018; Tseng and
Tzeng, 2002). Furthermore, the ARIMA models cannot deal with forecasting
problems in which the historical data are linguistic values and their forecast-
ing accuracy measures are not good enough (Chen and Phuong, 2017). These
limitations among others makes unfit the ARIMA models, because the ever un-
certain environment created by the technological advancement requires less of
the historical trends to forecast future patterns. Consequently, the search for an
efficient forecasting framework that might handle these limitations remains an
issue of intense research.
Fuzzy time series (FTS) was proposed in order to overcome the downsides of
the traditional time series forecasting methods such as the ARIMA. FTS models
do not require restrictive assumptions and too much background knowledge of
the observations Yusuf et al. (2017), contrary to traditional TSF methods. An
examination of the exiting literature shows that numerous experimental results
based on fuzzy time series models were reported to have outperformed classical
time series models. Moreover, despite great improvements published in the FTS
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literature in the recent years, there are still some unaddressed downsides of the
models.
To address the limitations and improve the forecasting performance of both tra-
ditional and fuzzy time series models, hybridisation was considered recently.
The motivation for using hybrid models according to Khashei et al. (2013),
comes from the assumption that either one cannot identify the true data gen-
erating process or that a single model may not be sufficient to identify all the
characteristics of the time series. In this case, some researchers combine Fuzzy
Time Series and ARIMA model (Xie et al., 2021). This hybridised model is
known as Fuzzy Autoregressive Integrated Moving Average (FARIMA) model.
In FARIMA models, instead of using crisp parameters, fuzzy parameters, in the
form of triangular fuzzy numbers are used (Torbat et al., 2017). Consequently,
the use of the fuzzy parameter reduces the need for large historical data unlike
ARIMA models. Tseng et al. (2001) first proposed the concept of FARIMA
in an effort to improve foreign exchange forecasting. Thereafter, many studies
were conducted and good results obtained using the FARIMA model. Xie et
al. (2021) developed a fuzzy ARIMA correction model for transport volume
forecast capable of long term prediction. Medina-Reyes et al. (2021) proposed
a new hybrid fuzzy time series model based on Fuzzy Time Series and Fuzzy
ARIMA that achieved better in-sample and out-sample accuracy tests. Torbat et
al. (2018) using FARIMA model forecasted the Iran’s steel consumption with
improved accuracy. Mehdi et al. (2019), reported that when the sample period is
shorter, the prediction using Fuzzy ARIMA model is better than other models.
By using quadratic approach, Wang et al. (2009) demonstrated the application
of FARIMA models on simulated time series data set and a better result was
achieved. However, the recent hybridisation of the FARIMA method with other
methods like Probabilistic Neural Network (PNN), and Sliding Window con-
cept and integration of effect factors into Objective Function in Torbat et al.
(2017), Mehdi et al. (2019) and Xie et al. (2021), respectively, is an indication
that achievement of predictions accuracy is still one of the major challenges of
the FARIMA method. Hence, a hybrid model on the basis of fuzzy regression
and fuzzy ARIMA models is proposed.
Fuzzy linear regression is used in evaluating the functional relationship between
the dependent and independent variables in a fuzzy environment (Alsoltany and
Alnaqash, 2015). A number of studies have been conducted in order to demon-
strated the applications of fuzzy regression method. Most recently, applications
of fuzzy regression were proposed in Malyaretz et al. (2018); Lee et al. (2020);
Taheri et al. (2020) and Attanayake (2021).
This paper aims to enhance the prediction accuracy through narrowing down the
projection bias problems specifically associated with FARIMA model’s interval
of possibility. We use real data for verifying the performance of the proposed
method. The data is related to gross domestic product (GDP), unemployment
rate, inflation rate, and foreign direct investment (FDI). The rest of the paper is
structured as follows: In section 2, Materials and Method is presented, followed
by Results and Discussion in section 3. Finally, conclusion is provided in section
4.
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2. Materials and Methods

2.1 Fuzzy Regression and Fuzzy Autoregressive Integrated Moving
Average

Fuzzy linear regression is a fuzzy type of classical regression analysis in which
some elements of the model are represent by fuzzy numbers (Alsoltany and Al-
naqash, 2015). The functional relationship between the response and explana-
tory variables as reported in Tanaka et al. (1982) is presented as follows:

Ỹ = Ã0 + Ã1x1 + Ã2x2 + · · ·+ Ãkxk (1)

Where:
Ỹ is the fuzzy output,
X = (x0i, x1i, x2i, · · · , xki)T , k-dimensional crisp input vector,
Ã = Ã0, Ã1, Ã2, · · · , Ãk)

T , fuzzy vector of coefficients presented in the form
of a symmetric triangular fuzzy number denoted by Ãk = [γk, βk], respectively,
γkandβk are its center and width, while x0i = 1, i = 1, . . . n.

The FARIMA model utilises same formulation as the FR model, except the ex-
planatory variables are lagged values of the response variable and the associated
residuals. Hence, the following is the generalised FARIMA (p,d,q) model:

ω̃p(L)Y
∗
t = τ̃q(L)ϵt (2)

Y ∗
t = ∆d(Yt − µ) (3)

The extended form of Equation (2) is given in Equation (4):

Ỹ ∗
t = ω̃0 + ω̃1Y

∗
t−1 + ω̃2Y

∗
t−2 + · · ·+ ω̃pY

∗
t−p + ϵt − τ̃1ϵt−1 − τ̃2ϵt−2 − · · · − τ̃qϵt−q (4)

Where, Equation (3) is the ARIMA process of the time series Yt, t is the time,
∆ = 1 − L, the difference operator, L is a lag operator; generally, LnYt =
Yt−n, Yt are observations, while, ω̃0, ω̃1, ω̃2, · · · , ω̃p and τ̃1, τ̃2, · · · , τ̃q are fuzzy
numbers.
The structure of the FARIMA (p,d,q) model is built on the ARIMA process of
the time series Yt. Thus, p is the order of the Autoregressive term, q is the order
of the Moving Average term, while d is the differencing order needed to achieve
stationarity of the time series Yt. In addition, autocorrelation function (ACF) and
partial autocorrelation function (PACF) are primary tools used to develop the
structure of the ARIMA model. The sample ACF plot and the sample PACF plot
are compared to the theoretical behaviour of these plots when the differencing
order is known. Equation (4) is modified to obtain Equation (5):

Ỹ ∗
t = Ã0+ Ã1Y

∗
t−1+ Ã2Y

∗
t−2+ · · ·+ ÃpY

∗
t−p+ ϵt− Ãp+1ϵt−1− Ãp+2ϵt−2− · · ·− Ãp+qϵt−q (5)

Where, Ã0, Ã1, Ã2, · · · , Ãp; Ãp+1, Ãp+2, · · · Ãp+q are fuzzy parameters.
http://www.bjs-uniben.org/
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2.2 Determination of the Fuzzy Parameters

A symmetrical fuzzy number Aj denoted as Ãj = [γj, βj] is defined as
µAj

(aj) = L((aj − γj)/βj), βj > 0, where, L(aj) is a shape function, γj is a
centre and βj is a width of fuzzy number. According to Tanaka and Watada
(1989), L(aj) is defined by:

i. L(aj) = L(−aj),
ii. L(0) = 1,

iii. L(aj) is strictly decreasing function for aj ≥ 0,
iv. {aj|L(aj) ≥ 0} is a closed interval.

For each type of Aj , the membership functions are assumed triangular. By def-
inition, it can be expressed as:

µÃj
(aj) =

{
1− |γj−aj|

βj
, if γj − βj ≤ aj ≤ γj + βj

0 otherwise
(6)

βj > 0.
According to the extension principle (Zadeh, 1975), the membership function
of the fuzzy numbers Ỹ and Ỹ ∗

t are respectively given in Equations (7) and (8):

µY (y) =


Max

(
0, 1− |y−

∑p
j=0 γjxij|∑p

j=0 βjxij

)
, if xij ̸= 0

1 ifxij = 0, y ̸= 0
0 ifxij = 0, y = 0

(7)

The spread of ỹ is
∑p

j=0 βjxij and the middle value of ỹ is
∑p

j=0 γjxij .

µỸ ∗(Y
∗
t ) =

{
1− |Y ∗

t −
∑p

j=0 cjY
∗
t−j−ϵt+

∑p+q
j=p+1 cjϵt+p−j|∑p

j=0 wjY ∗
t−j+

∑p+q
j=p+1 wjϵt+p−j

, for Y ∗
t ̸= 0, ϵt ̸= 0

0 Otherwise
(8)

Where cj is a centre, wj is a width of a fuzzy number.

2.3 Formulation of the Proposed Model
The proposed model combined the basic concept of FR and FARIMA models in
order to enhance prediction accuracy by narrowing down specifically the pro-
jection bias problems associated with FARIMA model. In other words, unlike
the existing FARIMA methods, the proposed model combines the history ef-
fect and influence factors both in the objective function and constraints in the
quest to improve prediction accuracy. We note that combining the history and
influence factors into a single objective function may not necessarily provide
new central values capable of narrowing the FARIMA interval of possibility.
Therefore, a hybrid search method that is capable of generating new central
values and narrowing the interval of possibility is proposed. The details of the
proposed method are provided as follows:
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Fitting FR and FARIMA models on an observed data are the first stage of the
proposed model. The linear programming formulation (LP) of these models are
presented in what follows:
Objective Function: We seek to find the coefficients Ãk = [γk, βk] that mini-
mize the spread of the fuzzy output for all data sets. Mathematically, for the FR,
this becomes:

Min S =

n∑
i=1

K∑
k=0

βk|xik| (9)

Similarly, for a FARIMA problem of order (p,d,q) with coefficients Ãj =
[cj, wj], the objective function is given as in Equation (10):

Min S =

n∑
t=1

p∑
j=0

wj|ϕjj||Y ∗
t−j|+

n∑
t=1

p+q∑
j=p+1

wj|ρj−p||ϵt+p−j| (10)

Where: wj , the width or spread around the center of the fuzzy number; ϕjj ,
the partial autocorrelation coefficient of time lag j; ρj−p, the autocorrelation co-
efficient of time lag j-p; Y ∗

t−j , differenced time series of Yt at time lag t − j;
Y ∗
t = ∆d(Yt − µ) ; and ϵt, ARIMA residuals at time t. The residuals, ϵt, are as-

sumed to be independently and identically distributed with a mean of zero and
a constant variance σ2.
Constraints: The constraints require that each observation yi (or yt in the case
of FARIMA model) has a threshold value h in the interval (0, 1) which is speci-
fied by the user of belonging to ỹ(y) (Taghizadeh et al., 2009). This implies,

ỹ(yi) ≥ h, i = 1, 2, · · · , n (11)

After separately substituting Equations (7) and (8) into Equation (11), the
simplified resulting LP models along the respective objective functions (see
Bakawu et al., 2023) are obtained as Equations (12) and (13) for the FR and
FARIMA models respectively.

Min S =

n∑
i=1

K∑
k=0

βk|xik|

s.t
K∑
k=0

γkxik − (1− h)

K∑
k=0

βk|xik| ≤ yi,∀ i = 1, · · · , n

K∑
k=0

γkxik + (1− h)

K∑
k=0

βk|xik| ≥ yi,∀ i = 1, · · · , n

βk ≥ 0, xi0 = 1; i = 1, · · · , n.

(12)

http://www.bjs-uniben.org/



61 Bakawu et al.
Where, γk and βk, for k = 0, 1, ..., K are the FR unknown fuzzy variables.

Min S =

n∑
t=1

p∑
j=0

wj |ϕjj ||Y ∗
t−j |+

n∑
t=1

p+q∑
j=p+1

wj |ρj−p||ϵt+p−j |

s.t
p∑

j=0

cjϕjjY
∗
t−j + ϵt +

p+q∑
j=p+1

cjρj−pϵt+p−j−

(1− h)

(
p∑

j=0

wj |ϕjj ||Y ∗
t−j |+

p+q∑
j=p+1

wj |ρj−p||ϵt+p−j |

)
≤ Y ∗

t ,∀ t = 1, · · · , n

p∑
j=0

cjϕjjY
∗
t−j + ϵt +

p+q∑
j=p+1

cjρj−pϵt+p−j+

(1− h)

(
p∑

j=0

wj |ϕjj ||Y ∗
t−j |+

p+q∑
j=p+1

wj |ρj−p||ϵt+p−j |

)
≤ Y ∗

t ,∀ t = 1, · · · , n

(13)

wj ≥ 0;∀j = 0, · · · , p+ q
Similarly, wj, cj , for j = 0, 1, ..., p + q. are the FARIMA unknown variables,
ρj−p is the autocorrelation coefficient of time lag j-p and ϕjj is the partial auto-
correlation coefficient of time lag j. Based on the results in Equations (12) and
(13), the relation in Equations (1) and (5) can be rewritten in Lower Bond (LB)
and Upper Bond (UB) form as follows:

yr(LB) = (γ0 − β0) + (γ1 − β1)x1i + (γ2 − β2)x2i + · · ·+ (γk − βk)xki

yr(UB) = (γ0 + β0) + (γ1 + β1)x1i + (γ2 + β2)x2i + · · ·+ (γk + βk)xki
(14a)

Y ∗
S(LB) = (c0 − w0) + (c1 − w1)Y

∗
t−1 + (c2 − w2)Y

∗
t−2 + · · ·+ (cp − wp)Y

∗
t−p + ϵt

−(cp+1 − wp+1)ϵt−1 − (cp+2 − wp+2)ϵt−2 − · · · − (cp+q − wp+q)ϵt−p

Y ∗
S(UB) = (c0 + w0) + (c1 + w1)Y

∗
t−1 + (c2 + w2)Y

∗
t−2 + · · ·+ (cp + wp)Y

∗
t−p + ϵt

−(cp+1 + wp+1)ϵt−1 − (cp+2 + wp+2)ϵt−2 − · · · − (cp+q + wp+q)ϵt−p
(14b)

The interval prediction models, that is Equations (14a) and (14b) makes it pos-
sible to forecast the best and worst possible values of Ỹ based on predetermined
values of X = (x1i, x2i, · · · , xki) when FR model is considered or the lagged
values of Y ∗

t in the case of FARIMA model.
Combining the FR and FARIMA results using a probabilistic weight factors

as demonstrated in Wang et al. (2009), generates the series yLB and yUB. The
mathematical formulation is given in Equation (15):

yLB = αryr(LB) + αSY
∗
S(LB)

yUB = αryr(UB) + αSY
∗
S(UB)

(15)

Where, yLB is the new lower control limit, yUB is the new upper control limit;
http://www.bjs-uniben.org/
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while, αr is the FR’s weight and αS is the FARIMA’s weight. Therefore, the LP
formulation of the proposed hybrid model that combines the history effects and
other influence factors in both objective function and the constraints as in what
follows:

Min S =

n∑
t=1

p∑
j=0

αj |ϕjj ||Y ∗
t−j |+

n∑
i=1

K∑
k=1

α∗
k|xik|

s.t
p∑

j=0

δjY
∗
t−j + ϵt − (1− h)

K∑
k=1

α∗
k|xik| ≤ yLB, ∀ i = 1, · · · , n;

p∑
j=0

δjY
∗
t−j + ϵt + (1− h)

K∑
k=1

α∗
k|xik| ≥ yUB,∀ i = 1, · · · , n;

αj , α
∗
k ≥ 0; j = 0, · · · , p; k = 1, · · · , K; t = 1, · · · , n

(16)

Where, δj (j = 0, . . . , p) are the new central values used for the adjustment
of the FARIMA model. In contrast to the existing models in the literature, this
proposed model is capable of minimising the total spread resulting from the
history effects and influence factors. Additionally, the result of the model also
determines the new central values for adjusting the fuzzy numbers. The training
steps and the prediction equation for the Hybrid Fuzzy Autoregressive Inte-
grated Moving Average Model with Adjusted Fuzzy Number (FARIMA-AFN)
are presented in Figure 1 and Equation (17):

Figure 1: FARIMA-AFN training steps.
http://www.bjs-uniben.org/
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Ỹ ∗
t = (δ0, w0) + (δ1, w1)Y

∗
t−1 + (δ2, w2)Y

∗
t−2 + · · ·+ (δp, wp)Y

∗
t−p (17)

3. Results and Discussion

In this section, we solved the LP problems (Equations (12), (13) and (16)) with
a threshold level of h = 0 in order to determine the minimal fuzziness of the
models using real data related to GDP (Y), unemployment rate (X1), inflation
rate (X2), and FDI (X3) obtained in Ogosi et al. (2022). The empirical results
are presented in four phases as in what follows:
Phase I. FR and FARIMA Parameters Estimation: the fuzzy parameters are ob-
tained by solving Equations (12) and (13) using Tora Optimization Software
(Taha, 2011). The central values and widths of each fuzzy parameter in equa-
tions (1) and (5) for h = 0 were obtained and presented in Tables 1 and 2 along
with the corresponding lower bound (LB) and upper bound (UB) respectively.

Table 1: Central and widths values for fuzzy parameters for FR
Fuzzy parameters Centre Width UB LB

A0 4.021 0.116 4.137 3.906
A1 1.005 0.000 1.005 1.005
A2 -0.145 0.022 -0.124 -0.167
A3 0.376 0.000 0.376 0.376

Table 2: Central and widths values for fuzzy parameters for FARIMA
Fuzzy parameters Centre Width UB LB

A0 0.074 0.000 0.074 0.074
A1 0.990 0.007 0.983 0.997

The estimated fuzzy linear regression model for the real GDP (ỹ) of Nigeria
against the three macroeconomic factors and the FARIMA model are provided
in Equations (18a) and (18b) respectively:

GDP (ỹ) = (4.021, 0.116) + (1.005, 0.000)x1 + (−0.145, 0.022)x2 + (0.376, 0.000)x3 (18a)

GDP (ỹt) = (0.074, 0.000) + (0.990, 0.007)Y ∗
t−1 (18b)

Phase II. FARIMA-AFN Parameters Estimation: four sets of alternating
weights (i.e. 0.1&0.9; 0.2&0.8; 0.3&0.7; 0.4&0.6) are examined, that is, by
changing the weights αr ( FR’s weight) and αS (FARIMA’s weight). The best
results are obtained when αr = 0.6 and αS = 0.4. Thus, the new lower and
upper control series in equation (15) is generated as follows:

yLB = 0.6yr(LB) + 0.4Y ∗
S(LB)

yUB = 0.6yr(UB) + 0.4Y ∗
S(UB)

(19)
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Subsequently, Equation (16) is solved to obtain the new centre values as shown
in Table 3. The new centre values replace the FARIMA centre values as an
adjusted fuzzy numbers. Consequently, the prediction equation for the Hybrid
FARIMA-AFN is given as in Equation (20).

Table 3: Central and widths values for Hybrid FARIMA-AFN
Fuzzy parameters Centre Width UB LB

A0 0.000 0.000 0.000 0.000
A1 1.004 0.007 0.997 1.011

GDP (ỹt) = (0.000, 0.000) + (1.004, 0.007)Y ∗
t−1 (20)

In Table 3, columns 4 and 5 indicates that the real GDP can be predicted when
the preceding year GPD coefficient is between 0.997 and 1.011.
Phase III. Prediction of bounds: using equation (20), the best and worst possi-
ble real GDP for the considered time range were predicted; the results are shown
in Table 4 together with FR and FARIMA bounds. Figures 2, 3, and 4 represent
the graphical plot of the predicted UB and LB of the FR, FARIMA and the
Hybrid FARIMA-AFN models along with the actual real GPD, respectively.
Phase IV. Bound assessment: from Table 4, as well as Figures 2, 3, and 4, it can
be observed that the actual GDP values are located within the predicted bounds.
However, the interval of possibility based on the proposed method is narrower
as compared to the other methods in most of the instances. Additionally, the
proposed method achieves minimal Root Mean Square Error (RMSE) in both
lower and upper bounds with the exception of FARIMA LB as presented in Ta-
ble 5. This implies that the proposed method outperforms the FR and FARIMA
methods. Hence, the proposed model, could be most suitable to forecast future
possibility interval of the real GDP of Nigeria.

Figure 2: Actual real GDP along with UB and LB resulting from FR model
http://www.bjs-uniben.org/
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Table 4: Forecasted Intervals of Possibility for FR, FARIMA, FARIMA-AFN,
and the Actual Real GDP.
Year FR LB FR UB FARIMA FARIMA Proposed Proposed GDP

LB UB LB UB
1991 4.507 4.228 * * * * 4.283
1992 4.182 4.484 4.285 4.342 4.269 4.329 4.293
1993 4.238 4.545 4.295 4.352 4.279 4.339 4.299
1994 4.301 4.608 4.301 4.358 4.285 4.345 4.301
1995 3.998 4.309 4.303 4.360 4.287 4.347 4.309
1996 4.128 4.422 4.311 4.368 4.295 4.355 4.326
1997 4.205 4.477 4.328 4.385 4.312 4.373 4.338
1998 4.121 4.395 4.339 4.397 4.324 4.385 4.349
1999 4.351 4.618 4.350 4.408 4.335 4.396 4.351
2000 4.367 4.635 4.352 4.410 4.337 4.398 4.375
2001 4.302 4.588 4.376 4.434 4.361 4.422 4.403
2002 4.410 4.689 4.403 4.462 4.389 4.450 4.462
2003 4.414 4.694 4.461 4.521 4.448 4.510 4.501
2004 4.394 4.676 4.500 4.560 4.487 4.550 4.544
2005 4.535 4.820 4.542 4.603 4.529 4.593 4.574
2006 4.576 4.847 4.571 4.633 4.559 4.623 4.602
2007 4.633 4.896 4.599 4.660 4.587 4.652 4.633
2008 4.623 4.900 4.630 4.691 4.618 4.683 4.663
2009 4.647 4.925 4.659 4.721 4.648 4.713 4.698
2010 4.588 4.869 4.693 4.756 4.683 4.749 4.737
2011 4.668 4.944 4.732 4.795 4.722 4.788 4.760
2012 4.620 4.898 4.754 4.818 4.745 4.811 4.778
2013 4.602 4.873 4.772 4.836 4.763 4.830 4.801
2014 4.669 4.940 4.795 4.859 4.786 4.853 4.827
2015 4.567 4.839 4.820 4.885 4.811 4.879 4.839
2016 4.804 5.086 4.832 4.897 4.823 4.891 4.832
2017 4.836 5.120 4.825 4.890 4.816 4.884 4.836
2018 4.759 5.037 4.829 4.894 4.820 4.888 4.844
2019 4.837 5.114 4.837 4.902 4.828 4.896 4.854

Figure 3: Actual real GDP along with UB and LB resulting from FARIMA
model
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Figure 4: Actual real GDP along with UB and LB resulting from FARIMA
model

Table 5: Root Mean Squares Error Values.
Bounds FR LB FR UB FARIMA FARIMA Proposed Proposed

LB UB LB UB
RMSE 0.1300 0.2011 0.0272 0.0409 0.0380 0.0323

4. Conclusion

This study presented a hybrid method that combined the basic concepts of
Fuzzy Linear Regression and Fuzzy Autoregressive Integrated Moving Aver-
age methods with a primary objective of enhancing the prediction accuracy
through narrowing down the projection bias problems specifically associated
with FARIMA model. Experiments were conducted using four different sets of
weights to combine the FARIMA and FR results by alternating the weights.
To show the forecasting performance of the proposed approach, we applied the
proposed method to forecast real GDP data in Nigeria. The proposed method
outperforms the considered methods in the literature in terms of predicting the
real GDP. Future research is focused on hybridising FARIMA with other avail-
able tools. The results of the hybrid method are evaluated on the basis of some
performance metrics.
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Appendix

Table 6: *
Data on Macroeconomic Variables: GPD(Y), Unemployment (X1), Inflation

(X2), and FDI(X3)
Year Y X1 X2 X3 Year Y X1 X2 X3
2019 4.854 0.908 1.057 0.519 2004 4.544 0.579 1.176 0.272
2018 4.844 0.916 1.082 0.301 2003 4.501 0.582 1.147 0.303
2017 4.836 0.924 1.218 0.544 2002 4.462 0.582 1.110 0.276
2016 4.832 0.849 1.195 0.648 2001 4.403 0.577 1.276 0.076
2015 4.839 0.634 0.955 0.486 2000 4.375 0.577 0.841 0.057
2014 4.827 0.659 0.906 0.671 1999 4.351 0.579 0.821 0.000
2013 4.801 0.568 0.928 0.745 1998 4.349 0.575 1.000 -0.523
2012 4.778 0.573 1.087 0.849 1997 4.338 0.575 0.931 -0.328
2011 4.760 0.576 1.035 0.946 1996 4.326 0.576 1.466 -0.301
2010 4.737 0.576 1.137 0.780 1995 4.309 0.575 1.862 -0.469
2009 4.698 0.571 1.099 0.932 1994 4.301 0.575 1.756 0.292
2008 4.663 0.549 1.064 0.913 1993 4.299 0.573 1.757 0.130
2007 4.633 0.553 0.732 0.781 1992 4.293 0.565 1.649 -0.046
2006 4.602 0.562 0.915 0.686 1991 4.283 0.561 1.114 -0.149
2005 4.574 0.573 1.252 0.697

Source: Ogosi et al. (2022)
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