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Abstract. In this study, the objective was to verify the quality of the adjustment of
the monthly average air temperature series in the State of Mato Grosso do Sul, using
data retrieved from the National Institute of Meteorology networks in the state of Mato
Grosso do Sul, Brazil. To achieve this objective, various distributions were fitted to the
series. Goodness-of-fit test statistics (Kolmogorov-Smirnov, Anderson-Darling, Cramer-
Von Mis), model selection criteria (AIC and BIC), and coefficient of Skewness and Kur-
tosis were employed, which showed that the air temperature is not uniformly distributed
over the region. The result shows that the two-parameter Weibull distribution fits the data
best. Furthermore, the air temperature of Mato Grosso do Sul, Brazil for the period of this
study is slightly above average in most cases with few extremely low values. It is recom-
mended that the two-parameter Weibull distribution be used when considering probability
model for air temperature series in the state of Mato Grosso do Sul, Brazil.
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1. Introduction

Knowledge of the spatial variation of air temperature is essential to characterize
and study the climate of a given region, perform agroclimatic zoning (Sediyama,
2002), assess climate risks for agricultural and forestry activities (Assad et al.,
2003), characterize drought and desertification events (Gois et al., 2005), de-
limit ecological regions (Oliveira et al., 2002), analyze the distribution of native
plant species (Buriol et al., 2007) and estimate global solar radiation (Meza
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and Varas, 2000; Ihaddadene et al., 2019; de Souza et al., 2019; Oliveira et al.,
2019). In addition to these, the knowledge of the current scenarios of the spatial
distribution of air temperature are fundamental in the analysis of the impacts of
climate change. This information mainly subsidizes socio-environmental poli-
cies, credit and rural and forestry security and energy generation.

Several studies that adjusted distributions of theoretical probability to climatic
variables such as temperature data: Assis et al. (2004) fitted several probability
distribution functions to the series of temperature and global radiation. In their
study, the normal distribution was reported to have fitted the data better. Torsen
et al. (2015) studied the reported maximum temperature in Adamawa state of
Nigeria, by examining the PDF that fits the data best, Johnson Sp distribution
was reported to outperform its counterparts. Assis et al. (2018) observed that
out of the seven (7) PDFs that was fitted to the monthly average temperature
data in Mossoro, Northern Brazil, the Normal PDF gave the best fit. Araujo et
al. (2010) also reported the Normal distribution as the best PDF that adapts to
the daily series of maximum temperature in Iguata city, Northeastern Brazil. de
Souza et al. (2020) emphasized the benefits of modeling in planning activities
to reduce climate risks, model adjustments for temperature and of interest to the
public and should be studied.

The use of probability density functions is directly linked to the nature of the
data to which these functions are related. Some have a good estimation capacity
for a small number of data, others require a large series of observations. Due
to the number of parameters in their equation, some can take different forms,
fitting into a larger number of situations, that is, they are more flexible. As long
as the representativeness of the data is respected, the estimates of its parameters
for a given region can be established as general use, without prejudice to the
precision in estimating the probability (Catalunha et al., 2002).

Continuous probability distributions are widely used in several probabilistic
studies (Assis et al., 2004; Junqueira Junior et al., 2007; Lyra et al., 2006), due
to the adjustment of their variables, which may not be perfect, but they describe
a real situation well, providing answers to the hypotheses that may have been
raised in the research.

The objective of this study is to verify the quality of the adjustment of monthly
average air temperature series in the State of Mato Grosso do Sul, Brazil, with
the following probability distributions: Normal, Log-Normal, 3-parameter Log-
Normal, Gamma, 3-parameter Gamma, Weibull, 3-parameter Weibull, Gumbel
and Rayleigh distributions. To do this, Goodness-of-fit statistics (Kolmogorov-
Smirnov, Anderson-Darling test and Cramer-Von Mis) and model selection cri-
teria (AIC and BIC) were used.

2. Materials and Methods

2.1 The Study Area

The state of Mato Grosso do Sul is located in the Midwest Region of Brazil,

with approximately 358, 159km?. The State is unique in the agricultural land-
scape since it emphasizes soy and cattle production and is the main source of
revenue in the agricultural sector. The topography varies in elevation from 24
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to 1,100 meters (Teodoro et al., 2016). The average yearly temperature and
precipitation vary from 20 to 26°C and 1,000 to 1,900 mm, respectively. The
Koppen classification represents numerous climatic types: Aw is found in the
state’s southeast and north, Am is in the middle region, Af is in the southwest
region, and Cfa is in the southern state (de Souza et al., 2022; Dos Reis et al.,
2022).

Tropical forest (Af) with year-round rainfall is the climate in the southwest of
Mato Grosso do Sul, south of the Pantanal (between —21° and —22°latitudes).
With a brief winter dry season, the center part of the state has a monsoon climate
(Am). The climate of Savannah (Aw), with dry winters and rainy summers, is
found to the north, in addition to a small portion of the central region and the
Southeastern state. The state’s only region with a year-round humid climate is
the south, where summers are hot and humid (Cfa) with highs of < 22°C (Abreu
et al., 2021).

Mata Atlantica (14% of the state’s total land), Cerrado (61% of the state’s total
area), and Pantanal (25% of the state’s total area) are among the biomes that
make up Mato Grosso do Sul (Abreu et al., 2021; Teodoro et al., 2016).

2.2 Source of Data

Data used in this study are monthly precipitation averages of 78 weather sta-
tions, retrieved from the National Institute of Meteorology (INMET) networks
in the state of MS.

2.3 Probability Distribution Functions (PDF's)

In this study nine (9) probability distributions namely 2-parameter Weibull
(W2P), 3-parameter Weibull (W3P), 2-parameter Rayleigh (RA2P), 2-
parameter Gamma (G2P), 3-parameter Gamma (G3P), Normal (NORM), 2-
parameter Lognormal (LN2P), 3-parameter Lognormal (LN3P) and Maximum
Gumbel distributions (GUM) are used to model the temperature data in the of
Mato Grosso do Sul. The probability distribution functions (PDF), correspond-
ing cumulative distribution functions (CDF), domains and parameters for these
distributions are discussed in Table 1 below.

2.4 Model Selection Criteria and Goodness of Fit Tests

Assessing the performance of different probability distribution models is nec-
essary to provide more accurate information about rainfall at a particular loca-
tion. In this study, in order to assess the goodness of fit (GOF) of the selected
pdfs for rainfall data the GOF tests such as the Cramer-von Mises (CvM),
Kolmogorov-Smirnov test (KS) and Anderson-Darling test (AD) are first ap-
plied and next the information criteria such as the Akaike information criterion
(AIC) and Bayesian information criterion (BIC) are used. The goodness of fit
tests are briefly described below. The Cramer-von Mises, Kolmogorov-Smirnov
and Anderson-Darling tests were used to decide if the air temperature series fol-
low the specified distributions.
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Table 1: List of the Distributions, PDFs, CDFs, domains and parameters

4 Probability Density Cumulative Distribution Function
Distributions Domains Parameters
Function (PDF) (CDF)
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f(X)Z%x"" exp[—[%] ] F(x):l—exp[—(%} ] * >0
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2.4.1 Cramer-von Mises (CvM) Test

Let x1, x2, ..., z, be the observed values in increasing order, then the CvM one
sample test statistic as given by Pettitt (1976) is

n 2 — 1 2
T:anZZlZ_ _F(%)} (1)
=1
where w? = [* |F,(z) — F*(z)|dF*(z), F* = theoretical distribution and F,
= empirical observed distribution.
If equation (1) is larger than critical value, the null hypothesis that the data came
from the distribution F’' can be rejected.

2.4.2 Anderson-Darling (AD) Test

Given that x1,x9,...,z, 1s the sample, then the AD test statistic (Anderson,
2011) is

A% =-n— Z l% -1 [log(F(x;)) + log(1 — F(xp+1-i))] 2)

n
=1
where n = the sample size, F'(x) = the CDF of the specified distribution, and
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117 Torsen et al.

i = the i*" sample, computed when the data is arranged in ascending order of
magnitude.

2.4.3 Kolmogorov-Smirnov (KS) Test
The KS test statistic (Yazici and Yolacan, 2007) is defined as follows

() - =} 3)

D,, = max {‘%—F(m(l)) -

1<i<n

Where, z(1), (2), ..., ¥(,) are observations in ascending order, so that x(;) <
T(2) < ... < z(,). The hypothesis that, the data follow specified distribution

is rejected at the significance level « if the test statistic D,, is greater than the
critical value of the K S test Dy, («).

2.4.4  Akaike Information Criterion (AIC)

The AIC (Bozdogan, 1987) is known as commonly used model selection cri-
terion that is calculated based on the maximized value of the log-likelihood
function for the estimated model. The AIC can be calculated as follows

AIC = =2InL + 2k 4)

2.4.5 Bayesian Information Criterion (BIC)

The BIC (Neath and Cavanaugh, 2012) is another commonly used information
criterion and it is closely related to the AIC. The BIC can be calculated as
follows

BIC = —=2InL + kin(n) (5)

2.5 The W2P Distribution

The W2P probability distribution function is the best PDF for modeling air
temperature in Mato Grosso Do Sul, Brazil, hence, we briefly discussed W2P
as obtainable in Nielsen (2011) is given below. If X ~ Weibull(«, 5) then its
PDF is defined as:

f(z|la, B) = g—ax(o‘_l)exp{ — (%)a},x >0,a>0 and [>0 (6)
Given this density function, « is the shape parameter and (3 represents the scale
parameter.
The CDF is defined as:
F(x\&,ﬂ)zl—exp{—(%)a},xzo,a>0 and [ >0 (7)

The mean is |

B(X)=pT(1+ 5) (8)
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The median is

Q=

Med(X) = pT'(log2) )

The mode is given as

a—1\a
Mod(X){ﬁ( - ) , o>l (10)
The variance is given by

Var(X) :52{r(1+2) - [(1+—)]2} (11)

The skewness is denoted by

F(l—i— %)53 — 3uc? — 13

o3

Skew(X) =7 = (12)
Where 1 is the mean and o5 is the variance.

The Excess Kurtosis is given by

B urt(X) = g — —6I] + 12I'Ty — 313 — 4T I'3 + Iy (13)
‘ ” Ty - T3

Where I'; = F(l + é)
Equation (13) can be written as as

BT+ ) —dmou = 6pPoy — s

Ex. Kurt(X) = v 1
o

3 (14)

2.6 Parameter Estimation

It is known that several methods can be used to estimate the parameters of pdfs,
the maximum likelihood estimation (MLE) was used for selecting the appropri-
ate probability distribution. Furthermore, maximum likelihood (MLE), moment
matching (MME), quantile matching (QME) and maximum goodness-of fit es-
timation (MGE) methods were compared for the selected probability distribu-
tion. Consequently, the MLE method presents better estimators in determining
the estimates of parameters of each probability distribution. Hence, it is dis-
cussed below. For more information about the parameter estimation method see
: Rao et al. (1973), Montgomery and Runger (2010), Coles et al. (2001), and
Delignette-Muller and Dutang (2015).

The joint density of the maximum likelihood (Nielsen, 2011) is given as the
product of the densities of each realization, thus from equation (6) we have
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_ ﬁ {%xm—l)ew{ _ (%)a}} (15)

Next, the log-likelihood transformation is given by
logL(oz, B|,I‘) = { (ﬁ)n f[ $(a—1) % &Tp{ _ (2?:1 fﬂz)a} }
60{ J 1 —5

:log a +ZOQ{HJIEQ 1] %)Q
=1

n

= nlog(%) + (o — 1)l0g[ngi] — (%)0‘ (16)

i=1 i=1

= nloga — nlogB* + (v — 1) Z logx; — Z B a
=1

= nloga — nalogf + (o — 1) Z logx; — Z (%)O‘

i=1 =1

Differentiating equation (16) with respect to o and 3 and equating to zero, we
have

OdlogL(a, f|x) 96@
= +§ El: 3 log(ﬁ) 0 (17
and
dlogL(a, Blz) —  «a a u Tiya
B - n(6>+(5)§ :(6) 0 (18)

From equation (18),

R |~

5= > )] (19)

& can be determined using Newton-Raphson method discussed below. Once, &

1s determined, B can be obtained from equation (19), see Guure et al. (2012) for
details.
Let h(«) be as given in equation (17), differentiating h(«) gives
http://www.bjs-uniben.org/
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v = () -3 (3) 1 (3)

Putting equation (19) into equation (17) yields

n n

o I P o —
W) = () Zl[lz” <xi>a]i] ZLZH%)@ o P =

i=1 tln Lui=1 i=1 Ln i=1 (%‘)a]

Q=

Substitute equation (19) into equation (20), we have

W(a) = —{ (5) + ; [% Z(g_ii(xi)alog L Z@_ii(xi)a}i] } =

- n

Hence, choosing an initial value for «; carefully and repeating the process until
it converges, & can be obtained.

Qi1 = Oy

_{ (8)+ 2 l((%‘)“/(% > i (@i)®) ) log? () /15 Z?_l(ma]i)} }

3. Results and Discussion

In this study, Nine (9) probability distributions listed in Table 1 were used to fit
the average Air Temperature of each of the seven regions of the state of Brazil.
Appendix A shows the density and cumulative density plot for the various re-
gions while Appendix B contains goodness-of-fit statistic and model selection
criteria. For all the regions the result is similar, 2-parameter Weibull distribution
was found to perform better having lower goodness-of-fit criteria. The Average
Temperature of Campo Grande region is hence adopted for further investigation.
Appendix C is the density and cumulative density plots of the Average Tem-
perature of Campo Grande based on four methods of estimation (Maximum
Likelihood Estimation (MLE), Moment Matching Estimation (MME), Quan-
tile Matching Estimation (QME) and Maximizing Goodness-of-fit Estimation
(MGE)) and their parameter estimates. MLE seems to be preferred based on
goodness-of-fit criteria (AIC and BIC) while MGE shows less distant in fitting
2-parameter Weibull distribution of average temperature of Campo Grande re-
gion. Eight (8) distance methods for MGE were further compared as shown
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in appendix D and ADL was selected for comparison with MLE. Finally, Ap-
pendix E suggests that, MLE is the preferred estimation method. Contrary
to the view that empirical moments are influenced by large observed values
(Delignette-Muller et al., 2020), trial with different sample sizes as low as 30
observation shows that MLE fits the data better.

Furthermore, simulated values based on shape and scale parameters obtained
from Weibull distribution using three different samples of sizes ranging from
small (10), medium (30) and large (50) shows negatively skewed Weibull dis-
tribution. Although Weibull distribution is said to be suited to accommodate
positively skewed distributions; this study reveals that Weibull distribution is
preferred even when the coefficient of skewness is negative (-1.19). The values
of the coefficient of skewness and kurtosis for various sample size are presented
in Table 2.

Table 2: Coefficient of Skewness and Kurtosis for Various Sample Sizes

Simulation Observed Sample
Statistics n=10 n=30 n=50 n=4385
Min 18.31 1545 13.45 7.18
Max 28.47 27.83 31.25 33.80
Mean 23.83 23.07 23.24 23.73
Standard Dev. 1.73  3.18 3.36 3.44
Skewness -0.06 -0.056 -0.93 -1.19
Kurtosis 3.15 2.33 6.72 5.13

From Table 2, the simulated values are seen to be within the range of the val-
ues of the average temperature of Campo Grande with consistent mean across
the four (4) samples. The standard deviations suggest that data generated with
smaller sample size is less dispersed while the average temperature of Campo
Grande is plagued with outliers compared to the simulated values as suggested
by the coefficient of skewness. While the coefficients of skewness are negative
(i.e longer left tail) and decreases with increase in sample observations, the kur-
tosis is closer to that of a symmetric distribution when the sample size is small.
The kurtosis for the average temperature of Campo Grande is leptokurtic, indi-
cating peaked curves compared to normal PDFE. The same is applied to all the
simulated samples except when the sample size is 30.

The scenario under study means the mode and median are higher than mean
in both the observed and simulated samples. This is to say that the average
air temperature for the period of this study is not uniformly distributed, rather
slightly above average in most cases with few extremely low values.

4. Conclusion

In this paper, the air temperature series for the State of Mato Grosso Do Sul,
Brazil was modeled using nine different probability distribution functions, out
of the nine distributions, the two-parameter Weibull (W2P) probability distri-
bution performed better. Hence, we recommend that the W2P probability dis-
tribution can be used for modeling air temperature series for the State of Mato
Grosso Do Sul, Brazil.
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Appedix A: Density and Cumulative Density Plots for the various Regions
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Appedix B: Model Selection Criteria(The estimation method is MLE)

CE?ET:_P;& Fg:r:rt; L;—;osas Aquidauna Corumba Coxim d%a?:l?;t;

S 0.11 0.11 0 .07 0.10 0.11 .09 .09

Cul 15.39 14 .85 6 .31 12 .83 16.68 9.19 9.68

Mo mmall Al 91 .09 86 .23 37 .05 TE .41 96 .39 51 .40 57 .45

AN 23262 .82 25152.81 23072.29 23722 .91 24171.74 21951.03 21996.96

BIC 23275.59 25165.58 23085.06 23735 .68 24184 .51 21963.80 22009.73

S 0 .06 0.07 0.03 0.05 0 .06 .05 o.05

Cul 4 .17 6.11 0.79 3.31 4 .46 272 2.73

2P -w Al 26.13 38.15 4 .33 20 .42 28 .53 15.70 15.64

AN 22887 .97 24607 .55 22710.20 23159 .64 23470.54 21628.79 21482.01

BIC 226800.74 24620.32 22722.97 23172 .41 23483 .31 21641 .56 21494.78
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3P Al 30 .54 41 .30 3.84 19 .64 27 .36 15.63 16.04

ANC  22590.29 24609.65 22710.73 23159.91 23470.99 21630.39 21482 .07

BIC 226803.08 24622 .42 22723.50 23172 .68 23483.76 21643.16 21494 .84

K= 0.16 0.16 0.13 0.16 0.16 0.15 0.15

Cul 51.93 41 .86 29 .61 44 12 47 .65 36 .19 45 .64

Gumnbe | Al 297 .18 243 96 179 .23 258 .07 269 .72 215 .47 268 .46
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MNomal
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Appedix C: Density and Cumulative Density Plots of four methods of

estimation of 2 parameter Weibull
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Appedix D: Density and Cumulative Density Plots of eight distances
methods of MGE
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Distance Method Parameter Estimates AIC BIC
CwM 10.275" | 25.160% | 21780.050 | 21792.820
KS 9.419" 252239 | 21739.040 | 21751.810
AD 9554 2516579 | 21705.920 | 21718.690
ADR 10,0397 | 250619 | 21766420 | 21779.190
ADL TR R 25.265% | 21685.250 | 21668.020
ADZR 7.798" 24.864% | 22190.730 | 22203.500
ADZL 6,821 25.830% | 21705.790 | 21718.560
ADZ 7.64247 24.891% | 21959.030 | 21971.800

Mshape parameter, ®scale parameter

Appedix E: Now compare MLE with MGE (ADL)
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