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Abstract. Response Surface Methodology (RSM) is a sequential statistical technique
with the goal to find settings of the explanatory variables that would optimize the re-
sponse. In literature, the nonparametric regression models are affected by the idiosyn-
crasies of RSM data, such as dimensionality problem, sparseness of the data and small
sample size. In this paper, we proposed an adaptive averaging regression model that com-
bines local linear regression (LLR) and the kernel regression models via convex com-
bination, which utilized the locally adaptive bandwidths from literature. The proposed
averaging regression model applied to RSM data showed improved goodness-of-fit statis-
tics and process requirements over Ordinary Least Squares (OLS), LLR with fixed band-
widths and LLR that uses existing bandwidths in a variety of data considered. Further-
more, simulation study was carried out on the multi-response data and the results show
that the proposed adaptive averaging regression model that employed the locally adaptive
bandwidths gives the smallest Average Sum of Squares Error.
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1. Introduction

Nair et al. (2014) and Yeniay, (2014) defined RSM as statistical procedure ap-
plied by engineers and industrial statistician for empirical model building, with
the aim of optimizing the response variables which are influenced by several
explanatory variables.
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An Adaptive Averaging Regression Model... 138
RSM is appropriate for optimizing the response variable y as a function of sev-
eral explanatory variables (xi1, xi2, · · · , xik) which can be modeled as:

yi = f(xi1, xi2, · · · , xik) + εi, i = 1, 2, . . . , n (1)

where εi is the error term and assumed to have a normal distribution with mean
zero and variance σ2. The surface represented by f(xi1, xi2, · · · , xik) is termed
a response surface (Wan and Birch, 2011).
The true response function f is usually unknown which must be estimated. Ap-
plying RSM, we seek to identify the functional relationship between the re-
sponses y and associated explanatory variables (xi1, xi2, · · · , xik).
The general parametric regression model in matrix notation can be written as:

y = Xβ + ε (2)

where y is a vector of response, X = X(OLS) is the OLS model matrix, β is
the unknown parameter vector and ε is the vector of error term assumed to be
normally distributed with zero mean and constant variance property.
The common approach for estimating the parameter vector in (2) is usually
based on the Method of OLS. The parameter vector estimates β̂ in (2) is given
as:

β̂(OLS) =
(
X

′(OLS)X(OLS)
)−1

X
′(OLS)y, X =X(OLS) (3)

The estimated responses for the ith location can be written as :

ŷ
(OLS)
i = x

′(OLS)
i β̂(OLS)=x

′(OLS)
i

(
X

′(OLS)X(OLS)
)−1

X
′(OLS)y, i = 1, 2, · · · , n (4)

where x
′(OLS)
i is the ith row of matrix X(OLS), n× (k + 1) vector.

H
′(OLS)
i =x

′(OLS)
i

(
X

′(OLS)X(OLS)
)−1

X
′(OLS) is the ith row of the OLS

“HAT” matrix of dimension n × n, H(OLS). The estimated response in the ith

location is given by:

ŷ(OLS) = H(OLS)y (5)

where the matrix H(OLS) is given as:

H(OLS) =


H

(OLS)
1

H
(OLS)
2 ...

H
(OLS)
n

 , (6)

(Carley, et al., (2004); River, (2009))
http://www.bjs-uniben.org/



139 Eguasa et al.
The LLR model is a weighted form of the least squares derived from Local
Polynomial Regression of order one (d = 1) which is an improvement over the
kernel regression model because it can adjust to bias both at the boundaries and
unequal spacing of the explanatory variables (Ruppert and Wand, 1994; Walker
et al., 2002).
The LLR model is derived from standard least squares theory. The LLR estima-
tor ŷ(LLR)

i of yi is given as:

ŷ
(LLR)
i =x

′(LLR)
i (X

′(LLR)WiX
(LLR))−1X

′(LLR)Wiy =H
(LLR)
i y, (7)

where y =(y1, . . .yn)
′
, x

′(LLR)
i = (1xi1 . . . xik) is the ith row of the LLR model

matrix, X(LLR) given as:

X(LLR) =

1 x11 x12 · · · x1k1 x21 x22 · · · x2k
... ... ... . . . ...
1 xn1 xn2 · · · xnk

 (8)

We define W, an n × n diagonal matrix of kernel weights for estimating the
response as

W = ciδip, i = 1, 2, ..., n; p = 1, 2, ..., n

where ci are kernels weight at ith location and δip is the Kronecker delta function
given as

δip =

1, ifi = p

0, otherwise
i = 1, 2, ..., n; p = 1, 2, ..., n (9)

Thus,

W =

c1δ11 c1δ12 · · · c1δ1n
c2δ21 c2δ22 · · · c2δ2n

... ... . . . ...
cnδn1 cnδn2 · · · cnδnn

 (10)

W =

c1 0 · · · 0
0 c2 · · · 0
... ... . . . ...
0 0 · · · cn


where c1 = wi1, c2 = wi2, . . ., cn = win. In terms of location, W =Wi

http://www.bjs-uniben.org/
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Wi =

wi1 0 · · · 0
0 wi2 · · · 0
... ... . . . ...
0 0 · · ·win

 , i = 1, 2, ..., n. (11)

(Wan and Birch, 2011; Eguasa, 2019).
For a single explanatory variable problem used in the diagonal weight matrix
Wi, the kernel function K

(
xij−x1j

bij

)
is a simplified Gaussian kernel when one

explanatory variable problem is used in the model matrix X, given as:

wi1 = K

(
xij − x1j

bij

)
= e

−
(

xij−x1j
bij

)2

(12)

In a situation where more than one explanatory variable are used in the model
matrix X, the kernel weight wi1, is a product kernel given as:

wi1 =
∏k

j=1K
(
xij−x1j

bij

)
∑n

p=1

∏k
j=1K

(
xpj−x1j

bpj

) , p = 1, 2, . . . , n, j = 1, 2, . . . , k, (13)

Wan and Birch (2011); Eguasa et al. (2022).
In RSM, the matrix comprising the vector of optimal bandwidths
b∗11, b12, . . . , b

∗
nk is obtained from the minimization of the Penalized Prediction

Error Sum of Squares (PRESS∗∗):

MinimizePRESS∗∗{b11, b12, . . . , bnk} =

∑n
i=1

(
yi − ŷ

(LLR)
i,−i

)2

n− trace
(
H(LLR)(ω)

)
+ (n− k − 1) SSEmax−SSEω

SSEmax

(14)
For i = 1 in (11), we have:

W1=

w11 0
0
...
0

w12
...
0

· · · 0
. . .
. . .
· · ·

0
...

w1n


(n×n)

(15)

w11 =

∏k
j=1K

(
x1j−x1j

bij

)
∑n

p=1

∏k
j=1K

(
xpj−x1j

bpj

) , p = 1, 2, ..., n; j = 1, 2, . . . , k. (16)
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w11 =
S

[S+T+...+U ]
, S = e

−(
x11−x11

b11
)2
e
−(

x12−x12
b12

)2
. . . e

−(
x1k−x1k

b1k
)2 ,

T = e
−
(

x21−x11
b21

)2

e
−
(

x22−x12
b22

)2

. . . e
−
(

x2k−x1k
b2k

)2

and U = e
−
(

xn1−x11
bn1

)2

e
−
(

xn2−x12
bn2

)2

. . . e
−(

xnk−x1k
bnk

)2

w12 =

∏k
j=1K

(
x2j−x1j

bij

)
∑n

p=1

∏k
j=1K

(
xpj−x1j

bpj

) , p = 1, 2, ..., n; j = 1, 2, . . . , k. (17)

w12 =
V

[W+V+...+Z]
, V = e

−(
x21−x11

b21
)2
e
−(

x22−x12
b22

)2
. . . e

−(
x2k−x1k

b2k
)2 ,

W = e
−(

x11−x11
b11

)2
e
−(

x12−x12
b12

)2
. . . e

−
(

x1k−x1k
b1k

)2

and Z = e
−
(

xn1−x11
bn1

)2

e
−
(

xn2−x12
bn2

)2

. . . e
−(

xnk−x1k
bnk

)2

w1n =

∏k
j=1K

(
xnj−x1j

bij

)
∑n

p=1

∏k
j=1K

(
xpj−x1j

bpj

) , p = 1, 2, ..., n; j = 1, 2, . . . , k. (18)

w1n =
R

[M +H + . . .+R]
(19)

R = e
−
(

xn1−x11
bn1

)2

e
−
(

xn2−x12
bn2

)2

. . . e
−
(

xnk−x1k
bnk

)2

,

H = e
−
(

x21−x11
b21

)2

e
−
(

x22−x12
b22

)2

. . . e
−
(

x2k−x1k
b2k

)2

and M = e
−(

x11−x11
b11

)2
e
−(

x12−x12
b12

)2
. . . e

−
(

x1k−x1k
b1k

)2

(11) translates to Wi=dia(wi1, wi2,. . ., win) for each i = 1, 2, ..., n.

ŷ(LLR)=H(LLR)y, (20)

(7) can be written in terms of hat matrix as:
http://www.bjs-uniben.org/
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H(LLR) =


x

′(LLR)
1

(
X

′(LLR)W1X
(LLR)

)−1
X

′(LLR)W1

x
′(LLR)
2

(
X

′(LLR)W2X
(LLR)

)−1
X

′(LLR)W2
...

x
′(LLR)
n

(
X

′(LLR)WnX
(LLR)

)−1
X

′(LLR)Wn

 (21)

where the n× n matrix, H(LLR) is the LLR hat matrix.
The drawback of LLR model is high bias in regions where there is curvature
because the structure of model matrix of the LLR model lacks the quadratic
terms (Hastie, et al., 2009; Rivers, 2009).

1.1 The Kernel Regression Model
The kernel regression was proposed by Nadaraya (1964), and the mathematical
expression for the kernel regression model is given as:

ŷ
(KER)
i =

∑k
j=1K(

xij−xo

b )∑n
l=1K(xl−xo

b )
y; i = 1, 2, . . . , n (22)

where xij is the design points, x0 is the target points, b = fixed bandwidth and
K(.) is kernel function.

1.2 Locally Adaptive Bandwidths
The bandwidth is the most important parameter in nonparametric regression
estimation because of its smoothing properties (Kohler et al., (2014)).
Eguasa et al. (2022) presented data-driven locally adaptive bandwidths:

bij = T1j(
1

2
−

xij
T2j

)2, i = 1, 2, . . . , n; j = 1, 2, . . . , k (23)

where, 0 < bij ≤ 1, , T1j > 0, T2j > 0.

The b∗ij of the locally adaptive optimal bandwidths from (23) is obtained at
an optimally selected values of T1j , T2j , (hereafter referred to as T ∗

1j andT ∗
2j ,

respectively), j = 1, 2, . . . , k, based on the minimization of the PRESS∗∗ cri-
terion in (14).
Where bij = b, is called a fixed bandwidth, otherwise bij, i = 1, 2, . . . , n; j =
1, 2, . . . , k are locally adaptive bandwidths.

http://www.bjs-uniben.org/
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2. Materials and Method

The philosophy behind the averaging regression model stem from the features
of the component models such that the kernel regression which is utilized as
a result of its simplicity in terms of application of the model, whereas the lo-
cal linear regression is attractive because it can adapt favorably in addressing
boundary bias problem inherent in the kernel regression (Fan, 1993; Choi and
Hall, 1998).

2.1 Adaptive averaging regression model
The averaging estimator proposed by Liu (2011) is an affine combination ap-
plied to density estimation. In this paper, we propose an adaptive averaging
regression (AVGR) model combining the local linear regression and the kernel
regression via the mixing parameter λ, with an adaptive bandwidths (smooth-
ing parameter) bij as given in Eguasa et al. (2022). This is achieved through the
combination of models in a convex manner as:

ŷ
(AV GR)
i = λŷ

(LLR)
i + (1− λ) ŷ

(KER)
i , 0 ≤ λ ≤ 1, i = 1, 2, . . . , n, j = 1, 2, . . . , k (24)

ŷ
(AV GR)
i = λx

′(LLR)
i (X

′(LLR)WiX
(LLR))−1X

′(LLR)Wiy+(1− λ)

∑k
j=1K(xij−xo

bij
)∑n

l=1K(xl−xo

bij
)
y (25)

ŷ
(AV GR)
i = λ


x

′

1

(
X

′
W1X

)−1
X

′
W1

x
′

2

(
X

′
W2X

)−1
X

′
W2

...
x

′

n

(
X

′
WnX

)−1
X

′
Wn

y

+ (1− λ)



K(
x11−x1

b11
)∑n

l=1 K(
xl−x1
b11

)

K(
x12−x1

b12
)∑n

l=1 K(
xl−x1
b12

)
· · ·

K(
x1k−x1

b1k
)∑n

l=1 K(
xl−x1
b1k

)

K(
x21−x2

b21
)∑n

l=1 K(
xl−x2
b21

)

K(
x22−x2

b22
)∑n

l=1 K(
xl−x2
b22

)
· · ·

K(
x2k−x2

b2k
)∑n

l=1 K(
xl−x2
b2k

)

... ... . . . ...
K(

xn1−xn

bn1
)∑n

l=1 K(
xl−xn

bn1
)

K(
xn2−xn

bn2
)∑n

l=1 K(
xl−xn

bn2
)
· · ·

K(
xnk−xn

bnk
)∑n

l=1 K(
xl−xn

bnk
)


y

(26)

where Wi =

wi1 0 · · · 0
0 wi2 · · · 0
... ... . . . ...
0 0 · · ·win

, i = 1, 2, ..., n.
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wi1=

∏k
j=1 K

(
xij−x1j

bij

)
∑n

p=1

∏k
j=1 K

(
xpj−x1j

bpj

) , p = 1, 2, . . . , n, j = 1, 2, . . . , k,


ŷ
(AV GR)
1

ŷ
(AV GR)
2

.

.

.

ŷ
(AV GR)
n

 =


λ(x

′

1

(
X

′
W1X

)−1
X

′
W1)y

λ(x
′

2

(
X

′
W2X

)−1
X

′
W2)y

.

.

.

λ(x
′

n

(
X

′
WnX

)−1
X

′
Wn)y



+(1− λ)



K(
x11−x1

b11
)y1∑n

l=1 K(
xl−x1
b11

)
+

K(
x12−x1

b12
)y2∑n

l=1 K(
xl−x1
b12

)
+ · · ·+

K(
x1k−x1

b1k
)yn∑n

l=1 K(
xl−x1
b1k

)

K(
x21−x2

b21
)y1∑n

l=1 K(
xl−x2
b21

)
+

K(
x22−x2

b22
)y2∑n

l=1 K(
xl−x2
b22

)
+ · · ·+

K(
x2k−x2

b2k
)yn∑n

l=1 K(
xl−x2
b2k

)

... ... ... ... . . .
... ...

K(
xn1−xn

bn1
)y1∑n

l=1 K(
xl−xn

bn1
)
+

K(
xn2−xn

bn2
)y2∑n

l=1 K(
xl−xn

bn2
)
+ · · ·+

K(
xnk−xn

nk
)yn∑n

l=1 K(
xl−xn

bnkk
)



Z1 =

(
x

′

1

(
X

′
W1X

)−1
X

′
W1

)
y, Z2=

(
x

′

2

(
X

′
W2X

)−1
X

′
W2

)
y,

. . . ,Zn=

(
x

′

n

(
X

′
WnX

)−1
X

′
Wn

)
y

and ξ1 =
K
(

x11−x1
b11

)
y1∑n

l=1 K
(

xl−x1
b11

)+ K
(

x12−x1
b12

)
y2∑n

l=1 K
(

xl−x1
b12

)+ . . .+
K(

x1k−x1
b1k

)yn∑n
l=1 K(

xl−x1
b1k

)
,

similarly,

ξ2 =
K
(

x21−x2
b21

)
y1∑n

l=1 K
(

xl−x2
b21

)+ K
(

x22−x2
b22

)
y2∑n

l=1 K
(

xl−x2
b22

)+ . . .+
K(

x2k−x2
b2k

)yn∑n
l=1 K(

xl−x2
b2k

)

and

ξn =
K(

xn1−xn

bn1
)y1∑n

l=1 K(
xl−xn

bn1
)
+

K(
xn2−xn

bn2
)y2∑n

l=1 K(
xl−xn

bn2
)
+ . . .+

K(
xnk−xn

nk
)yn∑n

l=1 K(
xl−xn

bnkk
)

ŷ
(AV GR)
1

ŷ
(AV GR)
2

.

.

.

ŷ
(AV GR)
n

 =


λ∗Z1
λ∗Z2
.
.
.

λ∗Zn

+ (1− λ∗)


ξ1
ξ2
.
.
.
ξn


http://www.bjs-uniben.org/
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where, ϱ1 = λ∗Z1 + (1− λ∗) ξ1, ϱ2 = λ∗Z2 + (1− λ∗) ξ2, . . . , ϱn = λ∗Zn +

(1− λ∗) ξn


ŷ
(AV GR)
1

ŷ
(AV GR)
2

.

.

.

ŷ
(AV GR)
n

 =


ϱ1
ϱ2
.
.
.
ϱn


In a location where λ = 0,the adaptive averaging regression model is reduced
to a kernel regression and for λ = 1,the adaptive averaging regression model is
a LLR. But if locations exist where some portion of the component estimates
of KER and LLR needed to be added to obtain the estimate of AVGR, then
proportion of the mixing parameter, λ is required to be in the interval (0, 1).
The optimal value λ∗ of λ in (25) is chosen based on the minimization of the
cross-validation criterion.

PRESS∗∗ (Ω, λ) =

∑n
i=1

(
yi − ŷ

(.)
i,−i(Ω, λ)

)2

n− trace
(
H(.) (Ω, λ)

)
+ (n− k − 1)SSEmax−SSEΩ

SSEmax

(27)

where Ω=[b∗1j, b
∗
2j, . . . , b

∗
nj] is the vector of optimal bandwidths, SSEΩ

is the Sum of Squared Errors associated with the set of the optimal
bandwidths,[b∗1j, b

∗
2j, . . . , b

∗
nj], trace

(
H(.) (Ω, λ)

)
is the trace of the Hat matrix,

and ŷ
(.)
i,−i(Ω, λ) is the leave-one-out cross-validation estimate of yi (Mays et al.

2001; Wan and Birch 2011).

3. Results and Discussion

We shall investigate the performance of the adaptive AV GRAB over OLS,
LLRFB and LLREAB in terms of the goodness-of-fit statistics and the opti-
mal settings of the explanatory variables that optimize the response using the
two RSM data.

3.1 Single response optimization problem
In this paper that involves a single response, the optimization of the fitted re-
sponse is aimed at the identification of the settings of the explanatory variables
that will maximize or minimize the fitted response (Pickle, 2006). Therefore,
the optimization criterion is based on the constrained minimization of the esti-
mated Squared Distance from Target, (SDT), given as:

http://www.bjs-uniben.org/
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Minimize ˆSDT = (ŷ(x)− T )2 s.t xϵφ, (28)

where φ is the design space for the study, T denotes the target value set by the
researcher, ŷ(x) is the estimated response at the settings x of the explanatory
variables (Pickle, 2006; Najafi et al., 2011; Eguasa et al. 2022).

3.2 Multi-Response optimization problem
This involves the optimization of two or more responses simultaneously with
the associated explanatory variables (xi1, xi2, ..., xik).
Based on the type of response, the desirability function transforms the estimated
response, ŷp (x) to different individual scalar measure, dp (ŷp (x)) namely:

For larger-the-better (LTB) response, dp (ŷp (x)) is given as:

dp (ŷp (x))=


0,{

ŷp(x)−L
T−L

}t1

1,

,

ŷp(x) < L

L ≤ ŷp (x) ≤ T

ŷp(x) > T,

, s.t xϵφ, (29)

whereTand L are the maximum acceptable value and lower limit, respectively,
of the pth response.
For a smaller-the-better (STB) response, dp (ŷp (x)) is given as:

dp (ŷp (x))=



1,{
U−ŷp(x)
U−T

}t2

0,

,

ŷp (x) < T,

T ≤ ŷp (x) ≤ U

ŷp (x) > U,

, s.t xϵφ (30)

where T and U are the minimum acceptable value and upper limit, respectively,
of the pth response.
For the nominal-the-better (NTB) response, dp (ŷp (x)) is a two sided transfor-
mation given as:
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dp (ŷp (x)) =



{
ŷp(x)−L
ρ−L

}t1
, L ≤ ŷp(x) < ρ,

{
U−ŷp(x)
U−ρ

}t2
, ρ ≤ ŷp (x) ≤ U,

0, otherwise

s.t xϵφ, (31)

where ρ is the target value of the pth response. However, for RSM data, the
parameters values of t1 and t2 are weights taken to be 1 for linearity (Castillo,
2007; Wan, 2007; He et al., 2009; He et al., 2012).

3.3 The overall desirability function
The objective of desirability function is to maximize the overall desirability,D,
which is the geometric mean of the individual desirability functions. Overall
desirability D is given as:

D = p
√

(d1(ŷ1 (x)).d2(ŷ2 (x)) . . . dv(ŷv (x)) (32)

where v is the number of response variables, d1ŷ1(x), d2ŷ2(x),. . ., dvŷv(x) are the
individual desirability (He et al., 2012; Ramakrishnan and Arumugam, 2012;
Granato and Calado, 2014). The desirability function dm (ŷm (x)) , m =
1, 2, . . . , v allocate values between 0 and 1 centered on the process requirements
such that the most undesirable and desirable values are dv (ŷv (x)) = 0 and
dv (ŷv (x)) = 1 respectively.

3.4 Genetic Algorithm
Genetic algorithms are iterative optimization techniques that repetitively apply
GA operations (such as selection, crossover and mutation) to a set of solutions
until some criterion of convergence is reached (Wan, 2007).

3.5 Application I: Single response chemical process data
The problem of the study as given in Myers and Montgomery (2002), Pickle
(2006) and Edionwe et al. (2016) was to relate chemical yield (y) to temperature
(x1) and time (x2) with the intention to maximize the chemical yield. The data
is obtained using the Central Composite Design is given in Table 1.
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Table 1: Single Response Chemical Process Data generated from the CCD
i x1 x2 y
1 -1 -1 88.55
2 1 -1 85.80
3 -1 1 86.29
4 1 1 80.44
5 -1.414 0 85.50
6 1.414 0 85.39
7 0 -1.414 86.22
8 0 1.414 85.70
9 0 0 90.21
10 0 0 90.85
11 0 0 91.31

Source: Myers and Montgomery (2002)

3.6 Data transformation using Central Composite Design (CCD)
Following nonparametric regression procedures in RSM, the values of the ex-
planatory variables are coded between 0 and 1. The data collected via a CCD is
transformed by a mathematical relation:

xNEW =
Min (xOLD)− x0

(Min (xOLD)−Max (xOLD))
(33)

where xNEW is the transformed value, x0 is the target value that needed to be
transformed in the vector containing the old coded value, represented as xOLD,
Min(xOLD) and Max (xOLD) are the minimum and maximum values in the
vector xOLD respectively, (He et al., (2012)).
The natural or coded variables in Table 1 can be transformed to explanatory
variables in Table 2 using (33)
Target points needed to be transformed for location 6 under the coded variables
are given below:
Target points x0 : 1.414, 0; Min (xOLD) : −1.414,−1.414;Max (xOLD) :
1.414, 1.414

xNEW =
Min (xOLD)− x0

(Min (xOLD)−Max (xOLD))

Explanatory variable x1 : x61 =
−1.414− (1.414)

((−1.414)− (1.414))
= 1.0000

Explanatory variable x2 : x62 =
−1.414− (0)

((−1.414)− (1.414))
= 0.5000
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Table 2: Single Response Chemical Process Data
i x1 x2 y
1 0.1464 0.1464 88.55
2 0.8536 0.1464 85.80
3 0.1464 0.8536 86.29
4 0.8536 0.8536 80.44
5 0.0000 0.5000 85.50
6 1.0000 0.5000 85.39
7 0.5000 0.0000 86.22
8 0.5000 1.0000 85.70
9 0.5000 0.5000 90.21
10 0.5000 0.5000 90.85
11 0.5000 0.5000 91.31

A second-order model was specified for the parametric technique (Pickle,
2006). The R2

adj from the OLS method using the full second-order model gives
67.77%. Here, the interest is to determine if the amount of variability not ex-
plained by the specified model can be reduced by the application of the LLR
method.

Table 3: Locally Adaptive Optimal Bandwidths for AV GRAB in the Single
Response Chemical Process Data

i
AVGRAB

LLR portion of Raw Bandwidths
AVGRAB

KER portion of Raw Bandwidths
x1 x2 x1 x2
bi1
T ∗
11 = 1.3151× 1016

T ∗
21 = 2.974× 1016

bi2
T ∗
12 = 1.4134× 1016

T ∗
22 = 1.0412× 1016

bi1
T ∗
11 =0.8279287983947552

T ∗
21 =0.7273434352880813

bi2
T ∗
12 =0.7727697768632593

T ∗
22 =0.8600799666900565

1 0.2672 0.1826 0.0739 0.0840
2 0.0597 0.1826 0.3756 0.0840
3 0.2672 0.1446 0.0739 0.1874
4 0.0597 0.1446 0.3756 0.1874
5 0.3288 0.0006 0.2070 0.0051
6 0.0353 0.0006 0.6337 0.0051
7 0.1448 0.3534 0.0291 0.1932
8 0.1448 0.2996 0.0291 0.3394
9 0.1448 0.0006 0.0291 0.0051
10 0.1448 0.0006 0.0291 0.0051
11 0.1448 0.0006 0.0291 0.0051

Table 4: Mixing Parameters of different models for Single Response Chemical
Process Data

Response Model λ

y

OLS NOT APPLICABLE
LLRFB NOT APPLICABLE
LLREAB NOT APPLICABLE
AV GRAB 0.9858066436933622
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Table 5: Comparison of the goodness-of-fit statistics of each method for the
chemical process data

METHOD b∗ DFerror MSE SSE R2 R2
adj PRESS PRESS∗ PRESS∗∗

OLS - 5.000 3.1600 15.8182 0.8388 0.6777 109.5179 21.9036 21.9036
LLRFB 0.5200 5.6509 5.7000 32.2355 0.6717 0.4190 93.2835 16.5076 8.9508
LLREAB ∗ 2.9261 0.5974 1.7481 0.9822 0.9391 46.0765 15.7467 4.2858
AV GRAB ∗ 2.0607 0.4014 0.8272 0.9916 0.9591 46.1257 22.3838 4.5848

Table 6. Comparison of optimization results (process requirement) for the
Chemical Process Data
Approach x1 x2 ŷ
OLS 0.43930 0.43610 90.9780
LLRFB 0.40140 0.39438 88.3509
LLREAB 0.40771 0.42312 91.1278
AV GRAB 0.7271761099247455 0.5000008537785228 92.5767

From Table 6, AV GRABprovides the best chemical yield over OLS, LLRFB
and LLREAB and the two settings of the explanatory variables give the best
process satisfaction.
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Figure 1: Model Residuals for single Response Chemical Process Data

As a follow up of the optimization result as given above, the residual result show
that AVGR model have the closest residual line to the zero residual line. This
also suggests that AVGR model that utilizes the adaptive bandwidth has a better
fit to OLS, LLR with fixed bandwidths and LLR with existing bandwidths.

3.7 Application II: Multi-Response Chemical Process Data
The following problem as given in He et al. (2009, 2012) was to obtain the set-
tings of the explanatory variables x1 and x2 (representing reaction time and tem-
perature, respectively) that would simultaneously optimize three quality mea-
sures of a chemical solution y1, y2 and y3 (representing yield, viscosity, and
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molecular weight, respectively). The process requirements for each response
are as follows:
Maximize y1 with lower limit L = 78:5, with target value = 80; y2 should take a
value in the range L = 62 and U = 68 with target value = 65; minimize y3 with
upper limit U = 3300 and target value = 3100.
Based on the process requirements a Central Composite Design (CCD) was con-
ducted to establish the design experiment and observed responses as presented
in Table 7.

Table 7: Designed experiment and response values (He et al. 2009, 2012)
i Experimental

variables
Responses

x1 x2 y1 y2 y3
1 -1 -1 76.5 62 2940
2 1 -1 78.0 66 3680
3 -1 1 77.0 60 3470
4 1 1 79.5 59 3890
5 -1.414 0 75.6 71 3020
6 1.414 0 78.4 68 3360
7 0 -1.414 77.0 57 3150
8 0 1.414 78.5 58 3630
9 0 0 79.9 72 3480
10 0 0 80.3 69 3200
11 0 0 80.0 68 3410
12 0 0 79.7 70 3290
13 0 0 79.8 71 3500

Table 8 is the transformed data from CCD to RSM data using the mathematical
relation in (33) that needed to lie between zero and one inclusively.

Table 8: Multiple Response Chemical Process Data
i x1 x2 y1 y2 y3

1 0.1464 0.1464 76.5 62 2940
2 0.8536 0.1464 78.0 66 3680
3 0.1464 0.8536 77.0 60 3470
4 0.8536 0.8536 79.5 59 3890
5 0.0000 0.5000 75.6 71 3020
6 1.0000 0.5000 78.4 68 3360
7 0.5000 0.0000 77.0 57 3150
8 0.5000 1.0000 78.5 58 3630
9 0.5000 0.5000 79.9 72 3480

10 0.5000 0.5000 80.3 69 3200
11 0.5000 0.5000 80.0 68 3410
12 0.5000 0.5000 79.7 70 3290
13 0.5000 0.5000 79.8 71 3500

Tables 9, 10 and 11 are the LLR portion of Raw Bandwidths and KER portion of
Raw Bandwidths, and their respective tuning parameters T ∗

ij, i = 1, 2, . . . , n; j =

http://www.bjs-uniben.org/



An Adaptive Averaging Regression Model... 152
1, 2, . . . , k.

Table 9: Optimal values of tuning parameters and Proposed Bandwidths for
y1using AV GRAB

i
AVGRAB

LLR portion of Raw Bandwidths
AVGRAB

KER portion of Raw Bandwidths
x1 x2 x1 x2

bi1
T ∗
11 = 1.0031× 1016

T ∗
21 = 5.9998× 1016

bi2
T ∗
12 = 1.2694× 1016

T ∗
22 = 1.0541× 1016

bi1
T ∗
11 =

0.43958982658026424
T ∗
21 =

0.5433341698401398

bi2
T ∗
12 =

0.24313039334432818
T ∗
22 =

0.5007258971363912
1 0.2269 0.1655 0.0234 0.0105
2 0.1284 0.1655 0.5043 0.0105
3 0.2269 0.1218 0.0234 0.3529
4 0.1284 0.1218 0.5043 0.3529
5 0.2508 0.0008 0.1099 0.0604
6 0.1115 0.0008 0.7899 0.0604
7 0.1741 0.3174 0.0776 0.0608
8 0.1741 0.2555 0.0776 0.5449
9 0.1741 0.0008 0.0776 0.0604
10 0.1741 0.0008 0.0776 0.0604
11 0.1741 0.0008 0.0776 0.0604
12 0.1741 0.0008 0.0776 0.0604
13 0.1741 0.0008 0.0776 0.0604

Table 10: Optimal values of tuning parameters and locally adaptive bandwidths
for y2 using AV GRAB

i
AVGRAB

LLR portion of Raw Bandwidths
AVGRAB

KER portion of Raw Bandwidths
x1 x2 x1 x2

bi1
T ∗
11 =1.524×1016

T ∗
21 =4.4808×1016

bi2
T ∗
12 =0.4149×1016

T ∗
22 =7.6721×1016

bi1
T ∗
11 =

0.1629894899642587
T ∗
21 =

0.9121204184044590

bi2
T ∗
12 =

0.3168700509293532
T ∗
22 =

0.8144733668083716
1 0.3328 0.0960 0.0188 0.0325
2 0.1460 0.0960 0.0310 0.0325
3 0.3328 0.0627 0.0188 0.0952
4 0.1460 0.0627 0.0310 0.0952
5 0.3810 0.0784 0.0407 0.0041
6 0.1168 0.0784 0.0580 0.0041
7 0.2299 0.1037 0.0004 0.0792
8 0.2299 0.0567 0.0004 0.1678
9 0.2299 0.0784 0.0004 0.0041
10 0.2299 0.0784 0.0004 0.0041
11 0.2299 0.0784 0.0004 0.0041
12 0.2299 0.0784 0.0004 0.0041
13 0.2299 0.0784 0.0004 0.0041
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Table 11: Optimal values of tuning parameters and locally adaptive bandwidths
for y3using AV GRAB

i
AVGRAB

LLR portion of Raw Bandwidths
AVGRAB

KER portion of Raw Bandwidths
x1 x2 x1 x2
bi1
T ∗
11 = 0.9987× 1016

T ∗
21 = 3.2763× 1016

bi2
T ∗
12 = 0.6603× 1016

T ∗
22 = 3.6044× 1016

bi1
T ∗
11 =

0.1953366132287132
T ∗
21 =

0.9273616121051431

bi2
T ∗
12 =

0.0841374339872218
T ∗
22 =

0.4158832406589298
1 0.2070 0.1393 0.0229 0.0018
2 0.0573 0.1393 0.0345 0.0018
3 0.2070 0.0457 0.0229 0.2028
4 0.0573 0.0457 0.0345 0.2028
5 0.2497 0.0862 0.0488 0.0415
6 0.0379 0.0862 0.0653 0.0415
7 0.1205 0.1651 0.0003 0.0210
8 0.1205 0.0327 0.0003 0.3052
9 0.1205 0.0862 0.0003 0.0415
10 0.1205 0.0862 0.0003 0.0415
11 0.1205 0.0862 0.0003 0.0415
12 0.1205 0.0862 0.0003 0.0415
13 0.1205 0.0862 0.0003 0.0415

Table 12: Mixing Parameters of different models for Multiple Chemical Process
Data

Response Model λ

y1

OLS NOT APPLICABLE
LLRFB NOT APPLICABLE
LLREAB NOT APPLICABLE
AV GRAB 1.0000000000000000

y2

OLS NOT APPLICABLE
LLRFB NOT APPLICABLE
LLREAB NOT APPLICABLE
AV GRAB 0.8229136094582358

y3
OLS NOT APPLICABLE
LLRFB NOT APPLICABLE
LLREAB NOT APPLICABLE
AV GRAB 1.0000000000000000

Table 12 is the mixing parameters only applicable to AV GRAB model for the
multi-response chemical process data.
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Table 13: Model goodness of fits statistics for Multiple Response Chemical
Process Data
Response Model DF PRESS∗∗ PRESS SSE MSE R2(%) R2

Adj(%)

y1

OLS 7.0000 0.3361 2.3525 0.4962 0.0709 98.27 97.04
LLRFB 7.4717 0.5686 8.4888 4.7536 0.6362 83.46 73.44
LLREAB 4.7777 0.2063 3.0144 0.3103 0.0649 98.92 97.29
AV GRAB 4.0144 0.0480 0.6687 0.2165 0.0539 99.25 97.75

y2

OLS 7.0000 28.8726 202.1082 36.2242 5.1749 89.98 82.81
LLRFB 7.2576 22.0691 330.8149 80.2383 11.0558 77.79 63.27
LLREAB 4.0015 9.7580 133.8681 10.0013 2.4994 97.23 91.70
AV GRAB 4.0008 9.1371 127.9099 10.0000 2.4995 97.23 91.70

y3
OLS 7.0000 159080 1113600 207870 29696 75.90 58.68
LLRFB 9.2798 56513 588010 243460 26235 71.77 63.50
LLREAB 5.8380 40779 508170 92621 15865 89.26 77.93
AV GRAB 4.0000 22024 308240 65720 16430 92.3804 77.14

The results obtained from Table 13, clearly shows that AV GRAB gave the
better performance statistic as compared with OLS, LLRFB and LLREAB for
the multi-response problem.
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Figure 2: Plot A: maximize chemical yield; Plot B: is a two sided transformation
of viscosity; Plot C: minimize molecular weight

In Figure 2, a critical look at residual plots for chemical yield, viscosity and
molecular weight shows that AV GRAB estimated f better than OLS, LLRFB
and LLREAB as given in (1).

Table 14: Model optimal solution based on the Desirability function for Multi-
ple Chemical Process Data

Model x1 x2 ŷ1 ŷ2 ŷ3 d1 d2 d3 D(%)
OLS 0.4449 0.2226 78.7616 66.4827 3229.9 0.1744 0.5058 0.3504 31.3800

LLRFB 0.4481 0.3709 78.5537 66.7908 3290.8 0.0358 0.4031 0.0461 8.7200

LLREAB 0.5155 0.3467 78.6965 65.0328 3285.9 0.1310 0.9891 0.0703 20.8837

AV GRAB0.9966702516947067 0.6354728955289123 79.5582 63.3972 3224.0000 0.7054 0.4657 0.3802 49.9899

From Table 14, AV GRABprovides the best chemical yield, viscosity and molec-
ular weight over OLS, LLRFB and LLREAB and the two settings of the ex-
planatory variables give the best process satisfaction.
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3.8 Simulation study
In this section, we compare the performances of the respective regression mod-
els, OLS, LLRFB, LLREAB and AV GEABusing simulated data. Each simula-
tion comprises of 500 data sets based on the following underlying polynomial
models:

Model 1 : yi = 20− 10x1i − 25x2i − 15x1ix2i + 20x21i + 50x22i+

γ {2 sin (4πx1i) + 2 cos (4πx2i)− 2 sin (4πx1ix2i)}+ εi;

Model 2 : yi = 66 + 22x1i + 10x2i + 13x1ix2i − 23x21i − 25x22i

+ γ {2 sin (3πx1i)− 2 cos (3πx2i) + 2 sin (2πx1ix2i)}+ εi;

Model 3 : yi = 45 + 27x1i + 9x2i + 19x3i − 22x1ix2i − 17x2ix3i − 8x1ix3i + 10x21i

+ 13x22i + 13x23i + γ (2 sin (3πx1i)− 2 cos (3πx2i)− 3 cos (4πx3i)

+ 2 sin (3πx1ix2i) + 2 cos (3πx2ix3i) + 2 sin (3πx1ix3i) + εi

where the x1i, x2i and x3i are the explanatory variables, εi,i = 1, 2, . . . , n, are the
error terms which are normally distributed with mean zero and variance 1, and
represents a misspecification parameter. The values of the explanatory variables
are presented in Table 15.

3.8.1 Simulation Study 1: Multi-Response Chemical Process Problem
This problem is analyzed by He et al., (2012) with the aim to get the setting of
the explanatory variables x1 and x2 (representing reaction time and temperature,
respectively).

Table 15: The CCD for the Simulating Data for Models 1-3
i x1 x2

1 0.8536 0.8536
2 0.1464 0.8536
3 0.8536 0.1464
4 0.1464 0.1464
5 1.0000 0.5000
6 0.0000 0.5000
7 0.5000 1.0000
8 0.5000 0.0000
9 0.5000 0.5000
10 0.5000 0.5000
11 0.5000 0.5000
12 0.5000 0.5000
13 0.5000 0.5000
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The goal of the simulation study is to validate the polynomial regression models
when applied to study that involve two explanatory variables. The model Av-
erage Sum of Squares (AVESSE) for each degree of model misspecification is
presented in Table 15.

Table 16: Comparison of the AVESSE of each method for each model in the
simulation studies
Model γ OLS LLRFB LLREAB AV GRAB

(1)
0.00 6.9849 68.9816 6.3277 6.6450
0.50 18.0887 61.6146 14.4455 15.6081
1.00 51.0910 99.0211 15.1152 34.8047

(2)
0.00 7.0210 34.0919 13.6632 6.6107
0.50 13.7667 41.8323 20.9044 13.4577
1.00 39.1912 72.1624 38.9560 34.8232

(3)
0.00 7.0113 28.9237 6.2117 6.3072
0.50 125.2006 254.4773 12.5466 9.8355
1.00 479.6291 747.5212 71.8911 12.1333

Clearly, from the simulated results as given in Table 16, AV GRAB gave smaller
AVESSE over other regression models considered even with the misspecifica-
tion parameters ranges from zero to one.

4. Conclusion

The quality of a process or product is one of the most crucial indicators that en-
lighten a consumer’s choice from one product in the midst of several contending
products. Therefore, refining the quality of a product is a vital approach that em-
braces growth in business, improved competitiveness and enormous revenues to
investment also see (Pickle, (2006); Castillo, (2007)).
In RSM, since the stages are sequential, a new product is subjected to exper-
imental design phase, modeling phase of the fitted regression model and the
optimization phase with the goal to find setting of the explanatory variables that
optimize responses as it relates to the quality of the new product. This sequential
procedure is referred to as product qualification in the manufacturing industries,
see (Najafi et al., (2011); Nair et al., (2014)).
Thereafter, large amount of this product is produced upon receipt of the quality
and reliability of the optimal setting of the explanatory variables which hinge
on how well the regression model fits the data, also see (Castillo, (2007); He et
al., (2012)).
In this paper, we proposed an adaptive averaging regression (AV GRAB) model
that combines local linear regression (LLR) and the kernel regression models
via convex combination for RSM data. The proposed AV GRAB model utilized
the locally adaptive bandwidths from literature for its fitting procedures and
simulation was carried-out for the multi-response data. The results of the good-
ness of fits and optimal solutions obtained indicated that the AV GRAB regres-
sion model utilizing the proposed bandwidths selector (Eguasa et al., (2022))
performs better than OLS, the LLR with fixed bandwidth, and the LLR that
utilizes the existing bandwidths.
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The limitations of local linear regression models stemmed from the peculiari-
ties in RSM data such as small sample size, utilizing more than one explanatory
variables and data sparsity. In spite of this, the AV GRAB model in RSM, shown
to be the appropriate choice which tremendously improved the goodness-of-fit
statistics and optimization results for single and multi-response problems con-
sidered. More so, the multi-response applications considered, AV GRPAB out-
performed existing models in terms of the goodness-of-fit statistics, and process
requirements.
Lastly, simulation study was carried out on OLS, LLR with fixed bandwidth,
LLREABand AV GRABto investigate the effect of the misspecification parame-
ter as it increases from zero to one. It was observed that theAV GRABwas con-
siderably stable over OLS, LLR with fixed bandwidth, LLREAB in terms of
AVESSE as the misspecification parameter increases from zero to one in all the
problems considered.
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