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Abstract. The Nadarajah-Haghighi distribution is an important lifetime distribution in
survival analysis that serves as an alternative to the Weibull, gamma and exponentiated
exponential distributions. In this paper, a new bivariate distribution is introduced using the
Nadarajah-Haghighi distribution. The joint probability density function was obtained us-
ing two copula functions: Gumbel-Barnett and Clayton copula functions. The model was
implemented under a Bayesian method of estimation, where Markov Chain Monte Carlo
(MCMC) simulations technique was employed to estimate the parameters of the model.
Applications to real data sets to show the utility of the model was provided using kidney
data and diabetic retinopathy data sets. The results of the applications suggest that the
new bivariate distribution fit the real data and perform much better than its competitors.
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1. Introduction

Bivariate data are present in areas such as engineering and medical sciences. For
instance, in the medical area, one may be interested in studying the lifetimes of
paired human organs, such as kidneys, eyes, double recurrence of a certain dis-
ease, familial association between various genetic diseases like breast cancer,
diabetes and heart diseases and times to primary and secondary complications
of a disease. Let T1 and T2 be the lifetimes associated to the same individ-
ual/device. In most bivariate lifetime data, the lifetime of one component may
influence the lifetime of the other component. That is, the bivariate lifetimes
data set presents dependence between the two lifetimes T1 and T2.
To study the structure of this dependence, Vaupel et al. (1979) have proposed
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47 Usman and Aliyu
the use of frailty models. In these models, the dependence between the lifetimes
is modelled by the inclusion of one or more random effects, while the marginal
times are conditionally independent given the frailty variable(s).
The use of copula functions is an alternative in modelling the dependence be-
tween the lifetimes T1 and T2 (see Nelsen (2007), Trivedi and Zimmer (2007),
Balakrishnan and Lai (2009) and Joe (2014)). Hence, Copulas are functions
that connect univariate distributions together so as to form multivariate distribu-
tions. Different types of copulas have been developed and studied by different
researchers Nelsen (2007), Trivedi and Zimmer (2007), etc. Hence, different
copula functions give different dependence structure among variables. Copula
functions have been applied in different fields such as: medical sciences by
Viswanathan and Manatunga (2001), Achcar et al. (2016), management sci-
ences by Abbas (2006), finance and economics by Roch and Alegre (2006),
Patton (2006) and Rivieccio (2015), (see Peres et al. (2018)) for more details.
The exponential distribution is a continuous distribution that is usually used
in measuring the amount of time for some specific event(s) to occur. The dis-
tribution is a one parameter distribution that is well known due to the constant
hazard rate, memory less property and a decreasing probability density function
it possesses. Hence, choosing the exponential distribution in reliability studies
may be inappropriate since its hazard rate does not show monotone and/ or non-
monotone failure rate behaviours, (Tahir et al., 2018). To solve this problem, re-
searchers have generalized the exponential distribution in order to add flexibility
to the distribution. For instance, Gupta and Kundu (1999) generalizes the expo-
nential distribution to the exponentiated exponential distribution, Nadarajah and
Haghighi (2006) to the Beta-exponential distribution, Nadarajah and Haghighi
(2011) to the Nadarajah-Haghighi distribution. Other distributions that gener-
alized the exponential distribution include the Weibull, Gamma, Burr X, Burr
XII, double exponential distributions to mentioned but a few. The present pa-
per, introduced bivariate distribution that could effectively modeled bivariate
survival data in different situations including censored data where two lifetimes
are observed for the same individual. The Nadarajah-Haghighi exponential dis-
tribution introduced by Nadarajah and Haghighi (2011) was considered since it
is more flexible compared to the exponential distribution.
The rest of the paper is organized as follows: In section 2, the Nadarajah-
Haghighi exponential distribution and copula functions were discussed. The
survival function and pdf of the bivariate Nadarajah-Haghighi distribution were
also discussed. Parameters of the distribution were estimated using the Bayesian
method of estimation in section 3 while section 4 gives real life applications of
the proposed methodology. Finally, we conclude in section 5.

2. Materials and Method

In this section, we give a brief discussion on Nadarajah-Haghighi exponen-
tial distribution and copula functions. The bivariate Nadarajah-Haghighi distri-
bution were introduced using the Nadarajah-Haghighi exponential distribution
considering the Gumbel-Barnett and Clayton copula functions.
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Bivariate Nadarajah-Haghighi distribution... 48
2.1 Nadarajah-Haghighi distribution
Let T be a random variable denoting the time to the occurrence of an event of in-
terest. The survival function of the Nadarajah-Haghighi exponential distribution
with parameters α and β is given as:

S (t/α, β) = exp
(
1− (1 + αt)β

)
(1)

where t > 0, α > 0 is the scale parameter, β > 0 is the shape parameter.
The corresponding probability density function (pdf), cumulative distribution
function (cdf) and hazard rate function of the Nadarajah-Haghighi exponential
(NH) distribution are respectively given as:

f (t/α, β) = αβ (1 + αt)β−1 exp
(
1− (1 + αt)β

)
(2)

F (t/α, β) = 1− exp
(
1− (1 + αt)β

)
(3)

and

h (t/α, β) = αβ (1 + αt)β−1 (4)

The survival function in (1) reduces to the survival function of the exponential
distribution when the shape parameter takes the value one(1). The shape of the
NH density can be monotonically decreasing, while that of the hazard rate func-
tion can be increasing, decreasing or constant. The distribution was shown to be
an alternative distribution to the Weibull, gamma and exponentiated exponential
distributions.

2.2 Copula
The term copula is a Latin word which means to connect and is used to re-
fer to connecting words. The word was first introduced by Sklar (1959) even
though Hoeffding had already presented the idea and established the best pos-
sible bond for these functions in Hoeffding (1940) and Hoeffding (1941), (see
Trivedi and Zimmer (2007) for more details). Hence, copulas are functions that
connect multivariate distributions to their one dimensional margins. Let G be a
p-dimensional cumulative distribution function with one-dimensional margins
G1, G2, · · · , Gp then ∃ a p-dimensional copula C such that
G (x1, x2, · · · , xp) = C (G1 (x1) , G2 (x2) , · · · , Gp (xp)).

The copula approach is a useful technique used in deriving the joint distribution
function of a random variable given their marginal distributions especially when
the variables are non-normal. The case p = 2 was considered in this work.
The theory of copulas basically relies on Sklars theorem. The theorem states
that: For any random variables, X1, X2, · · · , Xp with joint cdf ,
F (X1, X2, · · · , Xp) = P (X1 ⩽ x1, X2 ⩽ x2, · · · , Xp ⩽ xp)
and marginal cdfs Fj (x) = P (Xj < x) , for j = 1, 2, · · · , p then

∃ a copula C such that F (X1, X2, · · · , Xp) = C (F (x1) , F2 (x2) ,
· · · , Fp (xp)). C is unique if Fj (x) is continuous.
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Several types of copulas have been developed and studied. Nelsen (2007) and
Trivedi and Zimmer (2007) provided a very thorough coverage of the various
types of copulas. However, this study will use the Gumbel-Barnett (GB) and
Clayton copulas in introducing bivariate NH distribution.

2.2.1 The Model based on Gumbel-Barnett Copula
Copula functions are used in connecting the joint distribution function of two or
more univariate distributions. The copula function is said to be bivariate when it
connects the joint distribution function of only two univariate distributions. Let
S (tk) be the univariate survival function for the random variable Tp, p = 1, 2
the joint survival function S (t1, t2) is defined as:

S (t1, t2) = Cψ (S (t1)S (t2)) (5)

where t1 > 0 and t2 > 0, ψ is a measure of dependence between the random
variables T1 and T2 while C is a copula function. The Gumbel-Barnett copula
(GB) was proposed by Gumbel (1960), and Barnett (1980). The joint survival
function considering the GB copula function for the random variables T1 and T2
is given as:

S (t1, t2) = S (t1)S (t2) exp(−ψℓn(S (t1))ℓn(S (t2))) (6)

where ψ ∈ (0, 1) is the dependence parameter. It is important to note that, the
GB copula covers a region of negative dependence. The dependent parameter ψ
is related to the kendall (τ) coefficient as:

τ(ψ) = e
2
ψ

∫ − 2
ψ

−∞

et

t
dt

Assume T1 and T2 be two lifetimes associated to the same individual with
a dependence structure given by GB copula function. Assume further, T1 ∼
NH(α1, β1) and T2 ∼ NH(α2, β2). Then, the survival functions of the marginal
distributions for the lifetimes T1 and T2 are given by:

S1 (t1) = exp
(
1− (1 + α1t1)

β1

)
(7)

and

S2 (t2) = exp
(
1− (1 + α2t2)

β2

)
(8)

respectively, while the probability density functions are given by:

f1 (t1) = α1β1 (1 + α1t1)
β1−1 exp

(
1− (1 + α1t1)

β1

)
(9)

and

f2 (t2) = α2β2 (1 + α2t2)
β2−1 exp

(
1− (1 + α2t2)

β2

)
(10)
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Bivariate Nadarajah-Haghighi distribution... 50
respectively. Hence, the joint long-term survival function for the lifetimes T1
and T2 considering the Gumbel-Barnett copula is given as:

S(t1, t2) = exp (2− ψ (1− c1) (1− c2)− c1 − c2) (11)

where ψ is the dependent parameter and it takes values within the interval (0, 1),
c1 = (1 + α1t1)

β1, c2 = (1 + α2t2)
β2, α1 > 0 and α2 > 0 are the scale param-

eters, β1 > 0 and β2 > 0 are the shape parameters. The lifetimes T1 and T2 in
expression (11) becomes independent when the dependent parameter ψ takes
the value zero.
The first partial derivatives of (11) with respect to t1 and t2 are respectively:

∂S(t1, t2)

∂t1
= α1β1AB1A(t1, t2) [1− ψ (1− c2)] (12)

and

∂S(t1, t2)

∂t2
= α2β2AB2A(t1, t2) [1− ψ (1− c1)] (13)

where A = exp (2− c1 − c2) , A(t1, t2) = exp (−ψ(1− c1)(1− c2)) ,

B1 = (1 + α1t1)
β1−1 and B2 = (1 + α2t2)

β2−1.
The joint density function for the random variables T1 and T2 could be obtained
by deriving the second derivative of S (t1, t2) with respect to t1 and t2. That is,
f (t1, t2) =

∂2S(t1,t2)
∂t1∂t2

, this yields:

f(t1, t2) = α1α2β1β2B1B2SGB(t1, t2)
[
(1− ψ)2 − ψ − ψ(ψ − 1)(c1 + c2) + ψ2c1c2

]
(14)

The cdf corresponding to (11) is given as:

F (t1, t2) = exp (2− ψ(1− c1)(1− c2)− c1 − c2) (15)

2.2.2 The Model based on Clayton Copula
The Clayton copula is popularly used in fitting bivariate lifetimes data because
of its ability to describe positive dependence structure. Clayton copula function
was first introduced by Clayton (1978) and was later studied by Cook (1981)
and Oakes (1982). The joint survival function for the lifetimes T1 and T2 based
on the Clayton copula function is defined as:

S (t1, t2) =
(
(S(t1))

−ψ + (S(t2))
−ψ − 1

)− 1
ψ (16)

where S(t1) and S(t2) are the respective marginal survival functions for the
random lifetimes T1 and T2, ψ is the dependence parameter and it takes values
in the interval (0,∞). It is important to note that the random lifetimes T1 and
T2 become independent when the dependence parameter approaches zero. The
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dependence parameter ψ is related to the Kendall’s (τ) coefficient as:

τ(ψ) =
ψ

ψ + 2

where 0 < τ(ψ) ≤ 1. Note that total dependence between T1 and T2 will be
observed when ψ tends to infinity. Hence, Clayton copula is adequate in mod-
elling positive dependences and it has the advantage of measuring a high range
of positive correlations.
Consider the Clayton copula function assume T1 ∽ NH(α1, β1) and T1 ∽
NH(α2, β2), then the joint survival function for the bivariate lifetimes T1 and
T2 using equation (16) is given as:

S (t1, t2) =
(
e−ψ(1−c1) + e−ψ(1−c2) − 1

)− 1
ψ

(17)

where 0 < ψ <∞ and ψ is the dependence parameter.
Theorem 1: The joint survival function for T1 and T2 in equation (17) reduced
to S (t1, t2) = A when ψ → 0. That is, T1 and T2 are independent when ψ → 0.
proof:

lt
ψ→0

(
e−ψ(1−c1) + e−ψ(1−c2) − 1

)− 1
ψ

let

u = e(1−c1) and v = e(1−c2)

then

lt
ψ→0

(
e−ψ(1−c1) + e−ψ(1−c2) − 1

)− 1
ψ

= uv lt
ψ→0

(
uψ + vψ − uψvψ

)− 1
ψ

= uv lt
ψ→0

exp

−
log

((
uψ + vψ − uψvψ

)− 1
ψ

)
ψ


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applying L’hospital rule gives:

uv lt
ψ→0

exp

{
−u

ψlog(u) + vψlog(v)− uψvψlog(u)− uψvψlog(v)

uψ + vψ − uψvψ

}
= uv lt

ψ→0
exp {0}

= uv

= e(1−c1)e(1−c2)

=A

The first partial derivatives of (17) with respect to t1 and t2 are respectively
given by:

∂S(t1, t2)

∂t1
= α1β1B1e

−ψ(1−c1)B(t1, t2)
−1
ψ
−1 (18)

and

∂S(t1, t2)

∂t2
= α2β2B2e

−ψ(1−c2)B(t1, t2)
−1
ψ
−1 (19)

where
B(t1, t2) = exp

(
−ψ(1− (1 + α1t1)

β
1 )
)
+ exp

(
−ψ(1− (1 + α2t2)

β
2 )
)
− 1.

The pdf and cdf corresponding to (17) are respectively:

f(t1 t2) = α1α2β1β2B1B2A
−ψB(t1, t2)

−1
ψ
−2 (20)

F (t1 t2) = B(t1, t2)
−1
ψ − e1−c1 − e1−c2 + 1 (21)

2.3 Inference Methods
In this section, the problem of estimating the parameters of the bivariate
Nadarajah-Haghighi distribution based on random samples of size n was ad-
dressed using the Bayesian method of estimation procedure.

2.3.1 Bayesian Method of Estimation
The Bayesian method of estimation is a method that combines the prior infor-
mation with new information that is available to form the basis for statistical
analysis. That is, Bayesian method combines prior information with new in-
formation to come up with the posterior distribution. To find the estimates of
the model using Bayesian method, let Θ = (α1, α2, β1, β2, ψ)

′ be the vector of
unknown parameters. Under the Bayesian framework, the joint posterior distri-
bution of the parameters in the model is obtained by combining the likelihood
function and the joint prior distribution of the parameters. The likelihood func-
tion of the parameters assuming right censoring is obtain as follows:
Let T1 and T2 be two lifetimes associated with the same subject and as-
sume either T1 or T2 may be censored. Assume further that, censoring is in-
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53 Usman and Aliyu
dependent of the time to the event of interest in the study. Let (T11, T21) ,
(T12, T22) , · · · , (T1n, T2n) be a random sample from the bivariate Nadarajah-
Haghighi distribution with parameter Θ where Θ = (α1, α2, β1, β2, ψ)

′ is a pa-
rameter space. Then, the ith observation i = 1, 2, · · · , n fall in one of the fol-
lowing groups:

• G1 : both t1i and t2i are complete observations.
• G2 : t1i is complete and t2i is censored.
• G3 : t1i is censored and t2i is not censored.
• G4 : both t1i and t2i are censored observations.

Then, the likelihood based on these conditions can be expressed as:

L =
∏
i∈G1

[
∂2S (t1i, t2i)

∂t1i∂t2i

] ∏
i∈G2

[
−∂S (t1i, t2i)

∂t1i

] ∏
i∈G3

[
∂S (t1i, t2i)

∂t2i

] ∏
i∈G4

S (t1i, t2i)

(22)
Let δ1i and δ2i be indicator variables, such that δ1i = δ2i = 1 when tji is a com-
plete observation and δ1i = δ2i = 0 when tji is censored. Hence, the likelihood
function in equation (22) can now be written as:

L =
n∏

i=1

[
∂2S (t1i, t2i)

∂t1i∂t2i

]δ1iδ2i [−∂S (t1i, t2i)

∂t1i

]δ1i(1−δ2i) [−∂S (t1i, t2i)

∂t2i

](1−δ1i)δ2i

[S (t1i, t2i)]
(1−δ1i)(1−δ2i)

(23)
Let the joint prior distribution for α1, α2, β1, β2 and ψ be

Π(Θ) = π11(α1)π12(α2)π21(β1)π22(β2)π3(ψ)

Assumed the following prior distributions for the parameters α1, α2, β1, β2 and
ψ of the BNH distribution:

π1k(αk)∝ αbk−1
k eakαk αk > 0

and

π2k(βk)∝ βdk−1
k eckβk βk > 0

for k = 1, 2. All the hyper-parameters ak, bk, ck and dk are assumed to be known
and non-negative. On the other hand, a uniform prior was assumed for the de-
pendence parameter (ψ) when considering the GB copula function. That is:

π3(ψ) ∼ unif [e, f ]

where the hyper-parameters e and f are assumed to be known and real. While a
gamma prior was assumed for the dependence parameter (ψ) when considering
the Clayton model. That is:

π3(ψ) ∝ ψh−1egψ ψ > 0 (24)

where g and h are known hyper-parameters. The hyper-parameters g and h were
also assumed to be non-negative. Furthermore, we assumed independence be-
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tween the prior distributions of the parameters α1, α2, β1, β2 and ψ. Then, con-
sidering as special case, the BNH distribution based on the GB copula, suppose
that x1, x2, · · · , xn is a random sample from the BNH-GB ∼ (α1, α2, β1, β2, ψ),
then, using the likelihood function together with Π(Θ) (the joint prior distribu-
tion), the joint posterior density for α1, α2, β1, β2 and ψ could be written as:

ℓ(α1, α2, β1, β2, ψ/x1, x2, · · · , xn) =
ℓ(x1, x2, · · · , xn/α1, α2, β1, β2, ψ)Π(Θ)∫∞

0

∫∞
0

∫∞
0

∫∞
0

∫ 1
0 ℓ(x1, x2, · · · , xn/α1, α2, β1, β2, ψ)Π(Θ)dα1dα2dβ1dβ2dψ

(25)

Computing the estimates of the parameters α1, α2, β1, β2 and ψ analytically in
(25) may not be possible in this case. Hence, MCMC method will be employed
to generate the samples from the posterior distribution and then compute the
Bayesian estimates of the parameters α1, α2, β1, β2 and ψ. The OpenBug soft-
ware was used in this work to obtain the Bayes estimates.

2.4 Deviance Information Criteria
The Deviance Information Criteria was used in assessing the performance of the
fits of two or more models. The Deviance Information Criteria (DIC) proposed
by Spiegelhalter et al. (2002) is defined as D (Θ) = D

(
Θ̂
)
+ 2np = 2D̄ −

D
(
Θ̂
)

, where D
(
Θ̂
)

is the deviance evaluated at the posterior mean Θ̂, np is

the effective number of parameters in the model defined as np = D̄ − D
(
Θ̂
)

,

D̄ = E (D (Θ)) is the posterior deviance measuring the goodness of fit of the
model to a given data set. The model with the least DIC value is regarded as the
best model.

3. Results and Discussion

In this section, two real data sets were analyzed in order to demonstrate the ap-
plicability of the proposed models. The first data set is the infections in kidney
patients data from McGilchrist and Aisbett (1991) which was previously ana-
lyzed by Achcar et al. (2015), Elaal and Jarwan (2017) and Mirhosseini et al.
(2015). The recurrence times to infection at point of insertion of catheter using
portable dialysis equipment for thirty-eight (38) kidney patients were recorded.
Two recurrence times were recorded for each patient together with censoring in-
dicator (Infection occurs =1 and censored=0) and risk variable values (age, sex:
male=1, female=2 and disease type). Let T1 and T2 refers to first and second
recurrence time respectively. The recurrence times together with the aforemen-
tioned variables are shown in Table 1.
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Table 1: Kidney data
Patient T1 T2 Event type 1 Event type 2 Sex Age Disease types

1 8 16 1 1 1 28 3
2 23 13 1 0 0 48 0
3 22 28 1 1 1 32 3
4 447 318 1 1 0 31.5 3
5 30 12 1 1 1 10 3
6 24 245 1 1 0 16.5 3
7 7 9 1 1 1 51 0
8 511 30 1 1 0 55.5 0
9 53 196 1 1 0 69 1
10 15 154 1 1 1 51.5 0
11 7 333 1 1 0 44 1
12 141 8 1 0 0 34 3
13 96 38 1 1 0 35 1
14 149 70 0 0 0 42 1
15 536 25 1 0 0 17 3
16 17 4 1 0 1 60 1
17 185 177 1 1 0 60 3
18 292 114 1 1 0 43.5 3
19 22 159 0 0 0 53 0
20 15 108 1 0 0 44 3
21 152 562 1 1 1 46.5 2
22 402 24 1 0 0 30 3
23 13 66 1 1 0 62.5 1
24 39 46 1 0 0 42.5 1
25 12 40 1 1 1 43 1
26 113 201 0 1 0 57.5 1
27 132 156 1 1 0 10 0
28 34 30 1 1 0 52 1
29 2 25 1 1 1 53 0
30 130 26 1 1 0 54 0
31 27 58 1 1 0 56 1
32 5 43 0 1 0 50.5 1
33 152 30 1 1 0 57 2
34 190 5 1 0 0 44.5 0
35 119 8 1 1 0 22 3
36 54 16 0 0 0 42 3
37 6 78 0 1 0 52 2
38 63 8 1 0 1 60 2

The data was fitted to the bivariate Nadarajah-Haghighi distributions consid-
ering Gumbel-Barnett and Clayton copula function and compared their perfor-
mance with the fits of bivariate exponential (BE), bivariate Weibull (BW), bi-
variate exponentiated exponential (BEE) and bivariate modified Weibull (BMW)
distributions.
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Bivariate Nadarajah-Haghighi distribution... 56

Table 2: Posterior Summary Statistics Using Gumbel-Barnett Copula Function
- Kidney Data
model parameter mean sd 95% CrI DIC
BNH ψ 0.1261 0.1150 (0.0037, 0.4189) 684.6

α1 0.4700 0.1493 (0.2645, 0.8489)
α2 0.6980 0.2699 (0.3413, 1.3790)
β1 0.04371 0.0313 (0.0096, 0.1267)
β2 0.01891 0.0135 (0.0043, 0.0551)

BE ψ 0.0978 0.0887 (0.0027, 0.3330) 689.1
α1 0.0076 0.0013 (0.0052, 0.0105)
α2 0.0076 0.0015 (0.0050, 0.0108)

BW α1 0.7436 0.0993 (0.5601, 0.9545) 688.7
α2 0.8991 0.1313 (0.6567, 1.1790)
ψ 0.1203 0.1114 (0.0040, 0.4151)
β1 0.0327 0.0174 (0.0090, 0.0756)
β2 0.0155 0.0110 (0.003, 0.0444)

BEE α1 0.7527 0.1585 (0.4789, 1.0950) 691.2
α2 1.0420 0.2457 (0.6393, 1.5850)
ψ 0.1091 0.1041 (0.0031, 0.3895)
β1 0.0061 0.0016 (0.0034, 0.0095)
β2 0.0077 0.0020 (0.0042, 0.0121)

BMW α1 0.0457 0.0272 (0.0103, 0.1169) 690.8
α2 0.0265 0.0174 (0.0062, 0.0702)
β1 0.637 0.1346 (0.3841, 0.9064)
β2 0.7275 0.1368 (0.4628, 0.9989)
ϕ1 0.0010 0.0007 (0.0000, 0.0026)
ϕ2 0.0013 0.0008 (0.0001, 0.0032)
ψ 0.0829 0.0701 (0.0027, 0.2629)

In analyzing this data, we assumed prior independence among the model pa-
rameters and consider the following prior densities for αk, βk and ψ: αk ∼
Gamma(1, 1), βk ∼ Gamma(1, 1) where k = 1, 2, while ψ ∼ Unif(0, 1) when
considering the Gumbel-Barnett copula and ψ ∼ Gamma(1, 1) when consid-
ering the Clayton copula. Bayesian summary statistics were obtained by using
Markov Chain Monte Carlo (MCMC) simulation. In the applications, 220,000
Gibbs samples for each model parameter were generated and the first 20,000
simulated samples were discarded as burn-in so as to minimize the effect of
initial values. Also, to avoid auto-correlation between successive samples, each
20th simulated sample was stored. Hence, inferences were based on 10,000
samples.
Table 2 gives the results of the fits of the BNH, BE, BW, BEE and BMW distri-
butions considering the Gumbel-Barnett (GB) copula. The table gives the pos-
terior mean estimates of the parameters together with the standard deviation of
the estimates, 95% credible interval(95% CrI) and the DIC values. The results
showed that, the BNH distribution has the least DIC value. Hence, it is more
efficient compared to other models considered in the work.
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Table 3: Posterior Summary Statistics Using Clayton Copula Function - Kidney
Data
model parameter mean sd 95% CrI DIC
BNH ψ 0.0580 0.0583 (0.0014, 0.2166) 685.8

α1 0.4816 0.1431 (0.2756, 0.8341)
α2 0.6551 0.2540 (0.3213, 1.3110)
β1 0.0419 0.0282 (0.0099, 0.1167)
β2 0.0231 0.0166 (0.0049, 0.0667)

BE ψ 0.3265 0.2253 (0.0197, 0.8593) 687.1
α1 0.0077 0.0013 (0.0053, 0.0105)
α2 0.0075 0.0014 (0.0049, 0.0105)

BW α1 0.7424 0.0984 (0.559, 0.9495) 687.2
α2 0.8739 0.1240 (0.6395, 1.125)
ψ 0.4463 0.3067 (0.0284, 1.1800)
β1 0.0331 0.0176 (0.0096, 0.07700)
β2 0.0169 0.0113 (0.0036, 0.0464)

BEE α1 0.7517 0.1560 (0.4838, 1.1000) 688.6
α2 1.0500 0.2432 (0.6501, 1.6010)
ψ 0.3498 0.2495 (0.0211, 0.9744)
β1 0.0062 0.0015 (0.0035, 0.0094)
β2 0.0077 0.0019 (0.0043, 0.0119)

BMW α1 0.4421 0.2081 (0.0598, 0.7879) 689.9
α2 0.3659 0.1455 (0.0499, 0.6502)
β1 0.2478 0.1232 (0.0002, 0.4235)
β2 0.2020 0.0942 (0.0010, 0.3351)
ϕ1 0.0018 0.0007 (0.0005, 0.0035)
ϕ2 0.0019 0.0007 (0.0007, 0.0034)
ψ 0.1934 0.0689 (0.1000, 0.2730)

Table 3 gives the summary statistics of the results of the fits of the aforemen-
tioned distributions considering the Clayton copula function. Also, the BNH
distribution fits the data better than the BE, BW, BEE and BMW distributions.
Furthermore, comparing between the fits of the bivariate models considering
the GB and the Clayton models showed that, overall, the BNH distribution con-
sidering the GB copula function best fits the data.
The second data set is the diabetic retinopathy data set given by Huster et al.
(1989), available in the R package SurvCor Ploner et al. (2015). This data was
analyzed by Achcar et al. (2016), Franco et al. (2020), Martinez et al. (2018),
Peres et al. (2018). The data consists of the follow-up times of 197 diabetic
patients under the age of 60 years. The study aimed to assess the efficacy of
photocoagulation treatment for proliferative retinopathy. Each eye of each pa-
tient was randomized to either laser treatment or no treatment (being used as
the control). The event of interest is severe visual loss in each eye of the patient.
Let T1 and T2 be respectively the time up to visual loss for the control eye and
the treatment eye. Censoring was caused by death, dropout or termination of the
study.
In analyzing this data set, the choice of prior distribution of the model parame-
ters was the same with that of the kidney data application. Table 4 showed re-
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Table 4: Posterior Summary Statistics Using Gumbel-Barnett Copula Function
- Diabetic Retinopathy
model parameter mean sd 95% CrI DIC
BNHD ψ 0.0561 0.053 (0.0016, 0.1940) 1692

α1 0.2586 0.0876 (0.1482, 0.4955)
α2 0.3135 0.0841 (0.1941, 0.5281)
β1 0.0858 0.0464 (0.0238, 0.2014)
β1 0.0852 0.0394 (0.0305, 0.1820)

BE ψ 0.0484 0.0435 (0.0014, 0.1615) 1711
α1 0.0096 0.0011 (0.0075, 0.0119)
α2 0.0129 0.0014 (0.0103, 0.0157)

BW α1 0.7612 0.0840 (0.6016, 0.9297) 1704
α2 0.7876 0.0745 (0.6484, 0.9391)
ψ 0.0539 0.0518 (0.0014, 0.1872)
β1 0.0248 0.0084 (0.0119, 0.0444)
β1 0.0294 0.0087 (0.0156, 0.0497)

BEE α1 0.7800 0.1032 (0.5914, 0.9989) 1736
α2 0.7949 0.0967 (0.6139, 1.0000)
ψ 0.0524 0.0489 (0.0016, 0.1805)
β1 0.0067 0.0017 (0.0037, 0.0103)
β1 0.0095 0.0020 (0.0059, 0.0137)

BMW α1 0.0268 0.0087 (0.0129, 0.0471) 1706
α2 0.0304 0.0093 (0.0154, 0.0518)
β1 0.7054 0.0905 (0.5273, 0.8816)
β1 0.7564 0.0823 (0.5986, 0.9204)
ϕ1 0.0027 0.0023 (0.0001, 0.0085)
ϕ2 0.0019 0.0017 (0.0001, 0.0065)
ψ 0.0509 0.0495 (0.0015, 0.1825)

sults for the BNH, BE, BW, BEE and BMW distributions based on the Gumbel-
Barnett copula function. The results showed that, the BNH distribution is more
efficient compared to the BE, BW, BEE and BMW distributions since it has the
least DIC value. On the other hand, Table 5 showed results for the BNH, BE,
BW, BEE and BMW distributions based on the Clayton copula function con-
sidering the diabetic retinopathy data. Similar to the results of the distributions
based on Gumbel-Barnett copula, Table 5 showed that, the BNH distribution has
the lowest DIC value. Hence, it is more efficient compared to the BE, BW, BEE
and BMW distributions. Additionally, As in the previous application, comparing
between the fits of the bivariate distributions based on the Gumbel-Barnett and
Clayton copula functions showed that, the BNH Gumbel-Barnett distribution
fits the data better than the BNH Clayton distribution.
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Table 5: Posterior Summary Statistics Using Clayton Copula Function - Dia-
betic Retinopathy
model parameter mean sd 95% CrI DIC
BNHD ψ 0.0437 0.0434 (0.0011, 0.1602) 1693

α1 0.2579 0.0852 (0.148, 0.4746)
α2 0.3027 0.0760 (0.1911, 0.4890)
β1 0.0858 0.0450 (0.0251, 0.1983)
β1 0.0930 0.0428 (0.0343, 0.1980)

BE ψ 0.5405 0.2232 (0.1375, 0.9976) 1703
α1 0.0097 0.0012 (0.0076, 0.0121)
α2 0.0129 0.0014 (0.0104, 0.0159)

BW α1 0.7672 0.0828 (0.6129, 0.9396) 1696
α2 0.7899 0.0745 (0.6517, 0.9414)
ψ 0.5754 0.2465 (0.1462, 1.1130)
β1 0.0246 0.0082 (0.0117, 0.0435)
β1 0.0294 0.0086 (0.0153, 0.0487)

BEE α1 0.4715 0.358 (0.0705, 0.9666) 2007
α2 0.5027 0.3348 (0.129, 0.9733)
ψ 0.3779 0.2347 (0.1688, 0.9009)
β1 0.0038 0.0036 (0.0000, 0.0099)
β1 0.0054 0.005 (0.0000, 0.0133)

BMW α1 0.0319 0.01 (0.0160, 0.0546) 1702
α2 0.0341 0.0099 (0.0181, 0.0560)
β1 0.6516 0.0895 (0.4818, 0.8302)
β1 0.7197 0.0801 (0.5666, 0.8789)
ϕ1 0.004 0.0027 (0.0004, 0.0106)
ϕ2 0.0027 0.002 (0.0002, 0.0077)
ψ 0.5565 0.2392 (0.145, 1.0700)

4. Conclusion

In this paper, a new bivariate lifetime distribution based on the Nadarajah-
Haghighi distribution was proposed using the Gumbel-Barnett and Clayton cop-
ula functions in the presence of right censored data. The methodology was then
applied to two real data sets: kidney data and diabetic retinopathy data sets. The
performance of the fits of the BNH distribution was compared with the fits of
BE, BW, BEE and BMW distributions. MCMC technique was used to obtained
posterior summary statistics of the fitted bivariate distributions. The fits were
compared with respect to DIC criterion. Based on the DIC, the proposed BNH
distribution considering the GB copula best fit the data. Finally, it is important
to mention that, although the gamma prior was used for the shape and scale pa-
rameters, the method can be used for a more general class of priors. Choosing
a proper prior in practice is a very difficult task. Hence, more work is needed in
this direction.
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