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Abstract. In survival analysis, a baseline hazard function is combined with hazard multi-
pliers which depend on covariate values through a logarithmic link function and a linear
predictor. Hence, the form of dependence of the hazard multipliers on covariates is usu-
ally specified. This research is focused on a way of relaxing the specification of the form
of dependence of the hazard on the covariates in survival analysis using the generalised
piecewise constant hazard (GPCH) model where the covariates are made ordinal. The
Bayesian approach to inference is used with priors based on the parametric model which
allowed for main and interaction effects using R functions. A secondary data set of breast
cancer consisting of 300 patients with four complete covariates which include age, gen-
der, mode of diagnosis and location of breast cancer from the University of Ilorin teaching
hospital, Ilorin, Nigeria for a period of five years was used for illustration. The choice of
prior will allow a compromise which relaxes the form of dependence of the hazard func-
tion while imposing enough structure to exploit the information in the finite data set by
specifying correlations in the prior distribution between log-hazards for neighbouring co-
variate profiles.

Keywords: Inference, Covariates profile, Piecewise constant hazard, Prior distribution,
Linear predictor.

Published by: Department of Statistics, University of Benin,
Nigeria

1. Introduction

Survival analysis is a statistical technique used for analysing data for which the
variable of interest is time until an event occurs. It involves the modelling of
time to event data. The event data need not be death. Survival analysis can be
used in many fields of study such as engineering, medicine, health, etc. (Weiss,
2017). The simplest case of survival analysis comes from how long people live
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until death. In this case, survival analysis in medicine is used to estimate pa-
tient’s chances of survival after treatment of any disease (Saroj, 2020). In other
cases, the event might be time till failure or manufacture Hu and Laio, 2017) of
a machine.
Survival times are often censored (Lee and Lim, 2019), (Zhang, 2016) and
(Klein and Moeschberger, 2010). Censoring is one of the differences between
survival analysis and the standard regression models (Consul and Okrinya,
2018). A survival model includes two features. One of which is how the co-
variates are related to the distribution so that individuals can be distinguished
and the other is the form of the survival distribution. This study is classified
under the first feature. The proportional hazard model is well known to explore
the relationship between the covariates and the hazard function (Cox, 1972)
in which covariates act multiplicatively on the baseline hazards (Lefebvre and
Giorgi, 2021). Most parametric and non – parametric models usually assume
proportional hazard where the effects of the covariates on the hazard function
stays constant over time (Ma, 2021). A parametric form for the distribution may
be appropriate on the theoretical grounds but the problem with this approach is
that of the inconsistent estimates of the baseline hazard when the assumed para-
metric form is incorrect.
Many researchers have developed techniques to test and correct non – propor-
tional hazards (Magirr, 2020). The assumption of proportionality can be re-
laxed by having non - proportional hazard model. The piecewise constant haz-
ard model is used to specify the hazard by avoiding specifying the form for
the baseline hazard by dividing the time into sub intervals where the baseline
hazard and the linear predictor are assumed constant in each interval (Consul
and Okrinya, 2018). The piecewise constant function is a common approach to
modelling time varying effects since it is flexible enough to capture any shape
of baseline hazard or covariate effects using both the frequentist (Olayinka and
Ishaq, 2020) and more recently the Bayesian approach (Consul and Okrinya,
2018).
The proportional hazard model assumption fails to explain data related to non –
linear effects of covariates (Saha-Chaudhri and Juwara, 2020). Non-linearity in
models is usually handled through transformations and then estimation of linear
models Enesi and Oyejola, 2020). Procedures like the general additive models
(GAMs) have been used to handle complexities in covariates in different forms
which is unlikely with the usual Cox model. (Enesi and Oyejola, 2020) pro-
posed using modified piecewise additive hazard model where he assumed three
levels of variance of Weibull distribution for baseline hazards in generating data.
They also incorporated the functional form of continuous covariates in a non-
proportional hazard framework.
This research will further focus on exploring the relationship between the co-
variates and the hazard function by introducing the generalised piecewise con-
stant hazard (GPCH) model which generalises the piecewise constant hazard
model in which quantitative variables as well as time are made ordinal. The re-
search will aim at relaxing this relationship by removing the usual assumptions
of proportionality.
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2. Materials and methods

2.1 Modelling in survival analysis
A standard problem in survival analysis is to make inference for covariate ef-
fects and baseline hazards from life time or survival data. The hazard function
in survival analysis plays a central role. The proportional hazard model (PHM)
is well known to explore the relationship between the covariates and survival
(Cox, 1972). This is the most commonly used method to relate the hazard func-
tion to the explanatory variables of an individual (Consul and Okrinya, 2018).
The proportional hazard model uses the assumption of proportionality in which
the hazard of a particular individual is a fixed proportion of the hazard of an-
other individual and hence, the proportional hazard model depends on the co-
variates and not on the time. The baseline hazard function is combined with
hazard multipliers which depend on covariate values through a logarithmic link
function and a linear predictor.
Suppose that we have S covariates for s = 1....S and n individuals for i =
1.....n. The covariate vector for the ith individual is denoted by X i and given as

X i = (1, xi,1, xi,2, ....xi,S) (1)

The proportional hazard model is given by

hi(t) = λi × h0(t) (2)

where h0(t) is the baseline hazard function which is a function of time t and
does not involve the covariateX i = (1, xi,1, xi,2, ....xi,S). The quantity λi (which
is greater than 0) is the hazard multiplier which depends on the covariates of
the ith individual but not on the time variable t. The linear predictor ηi which is
expressed as a logarithmic link function is given as

log λi = ηi = β0 +

S∑
s=1

βsxi,s (3)

where xi,s is the value of covariate s for the ithindividual, β0 is the baseline
parameter and βs is the covariate effect of the sth covariate.

2.2 The piecewise constant hazard model (PCH)
The piecewise constant hazard (PCH) model is one of the most popular and eas-
ily used models for a semi-parametric approach to survival modelling (Breslow,
1974) and (Olayinka and Ishaq 2020). It is very useful over classical survival
methods. The piecewise constant hazard (PCH) model is flexible and relaxes the
assumption of a particular form for the baseline hazard by having sub-divided
time where the baseline hazard and the linear predictor are assumed constant in
each interval (Consul and Okrinya, 2018).
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Saroj (2020) described the piecewise constant hazard model using an under-
five mortality data. It is also usual that manufacturing machines work under
piecewise constant operating condition which are subject to imperfect preven-
tive maintenance. Hu and Liao (2017) developed the manufacturing machine
working under piecewise constant operating condition by combining an aged-
based hybrid imperfect preventive maintenance model and an accelerated fail-
ure time model.
The time t in the PCH model is partitioned into J disjoint intervals with J − 1
cut points given as 0 = τ0 < τ1 < τ2 < ...τJ−1 < τJ = ∞. It became evident
that the PCH model allows the baseline hazard to change at points but the coef-
ficients of the covariates do not change. The implication therefore, is that this is
still a proportional hazard model. Consul and Okrinya (2018) investigated the
problem of non - proportionality in a data using the piecewise constant hazard
model with time varying covariate effects where the effects of the covariates
were allowed to vary over time. The hazard function for the ith individual in the
jth interval, hi,j(t) for j = 1, 2, ....J for the piecewise constant hazard model
with time varying covariate effects is given by

hi,j(t) = h0,j(t) exp

{
S∑

s=1

βj,sxi,s

}
(4)

where xi,s denotes the value of the covariate s for the ith individual and βj,s is
the covariate effect for the covariate s in the jth interval.

2.3 A generalisation of the piecewise constant hazard model
In this section, the relaxation of the form of the dependence of the hazard func-
tion on the covariate effects is introduced using a new model. In it, the gener-
alised piecewise constant hazard (GPCH) model in which quantitative covari-
ates as well as time are categorised or made ordinal.
Recall that the piecewise constant hazard model was discussed in Section 2.2
as a model that relaxes the baseline hazard. In the standard piecewise constant
hazard model, the time variable is divided into intervals in which the hazard is
constant. The generalised piecewise constant hazard (GPCH) model is one form
of the piecewise constant hazard model in which the parametric assumption
of the relationships among the covariates is relaxed. In the GPCH model, the
quantitative covariates as well as the time variable are made ordinal and thus, the
covariate space is divided into cells within each of which the hazard is constant.
The time variable indicates the period in which the individual had the event or
was censored. It is treated as another ordinal covariate except that an individual
can appear in several time intervals. The time intervals therefore are incorpo-
rated just as in the case of the standard piecewise constant hazard model. The
“covariate profile” is then defined as a specific list of values for the categorised
covariates and a “cell” as a combination of a covariate profile and the time in-
terval.
Suppose that we have “S” covariates in the model. Let the number of levels of
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covariate s be ps. Then, each covariate profile is associated with a unique node
in a S-dimensional array in the covariate space containing P =

∏S
s=1 ps nodes.

Combining this covariate space with the J time intervals in the PCH, will give
a S +1 dimensional array with J ×P = c cells. A constant hazard is associated
with each cell. The collection of all log-hazards is defined as

η = (ηT
1
, ηT

2
, . . . , ηT

P
)T (5)

where η
p
= (ηp1, . . . , ηpJ)

T and ηpj is the log hazard for covariate profile p in
the time interval j for p = 1, . . . , P and j = 1, . . . , J . Now, the process leads to
the following definition

η̃ = (η̃T
1
, . . . , η̃T

J
)T (6)

where η̃
j
= (ηj,1, . . . , ηj,P )

T . such that η̃ is in arranged form of η so that we
have covariate profiles nested within time interval. This can be expressed as
follows:

η = Hη̃ (7)

where H is a permutation matrix. The Bayesian approach to inference is used.
Hence, we discuss the likelihood contribution and the choice of a suitable prior
distribution in the model.

2.3.1 The likelihood contribution in the generalised piecewise constant
hazard model

Similar to the thought process in the case of the PCH model, the likelihood
contribution in the jth time interval for the kth individual with profile p is related
to Lj,p,k. Hence, the overall likelihood is given as

L =

J∏
j=1

P∏
p=1

np∏
k=1

Lj,p,k =

J∏
j=1

P∏
p=1

Lj,p (8)

where np is the number of individuals in profile p.
The individuals are labelled i = 1, . . . , n the covariate profiles are labelled p =
1, . . . , P the time intervals as j = 1, . . . , J and the individuals in the subset with
covariate profile p are labelled k = 1, . . . , np. The number of individuals with
profile p who die will be denoted by nd,p. The number of individuals with profile
p who die in time interval j will be denoted by nd,j,p.
Therefore, the individual definition is as follows:

δj,p,k =

{
1 if the kth individual in profile p dies in interval j
0 otherwise

Now, it becomes
http://www.bjs-uniben.org/
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Lj,p =

{ np∏
k=1

λ
δj,p,k
j,p

}
exp

{
−λj,p

np∑
k=1

t∗j,p,k

}
= λ

nd,j,k

j,p exp
{
−λj,pT

∗
j,p

}
(9)

where λj,p = exp {ηj,p}, T ∗
j,p =

∑np

k=1 t
∗
j,p,k and

t∗j,p,k =

0 if tp,k < τj−1

tp,k − τj−1 if τj−1 < tp,k ≤ τj
τj − τj−1 if τj < tp,k

The overall likelihood contribution can then be written as

L =

J∏
j=1

P∏
p=1

λ
nd,j,p

j,p exp
{
−λj,pT

∗
j,p

}

=


J∏

j=1

P∏
p=1

λ
nd,j,p

j,p


exp

− J∑
j=1

P∑
p=1

λj,pT
∗
j,p

 (10)

2.3.2 A choice of prior distribution for the generalised piecewise constant
hazard model

The prior belief is such that the parameters of a model have no reference to the
data and it is therefore expressed in the form of probability density function.
In this model, a prior distribution in which the log - hazards in neighbouring
time intervals or covariate profiles are positively correlated will be used in the
generalised piecewise constant hazard model. The choice of a suitable prior
distribution will be based on a parametric model.
The structure of the prior of the GPCH model will allow for main and interaction
effects and we would expect that neighbouring time intervals are correlated in
their prior interaction.
Suppose that η∗ = (η1, . . . , ηP )

T is the log-hazard in the first-time interval for
the P covariate profiles and X = x1, . . . , xS′ be a design matrix of the data. We
recall that the vector of the parameters of the linear model β will also have S′

parameters. Then, we have that

η∗ = Xβ . (11)

If the expectation of β is (β) then the expectation of η∗ is

µ∗ = X(β) (12)
http://www.bjs-uniben.org/
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Let the covariance matrix of β be Vβ. Then, the covariance matrix of ∗ is

(η∗) = XVβX
T (13)

There is also the need to consider the dependence between parameters in differ-
ent time intervals. One possible way of constructing the joint prior distribution
of the c parameters of the model might be to give it either a stationary first order
autoregressive process prior or a moving average process prior. The assump-
tion here will be a first order autoregressive model AR(1) (Chatfield, 2004) and
so, we choose an autoregressive parameter ρ which gives different strength of
relationship to the parameters. If the autoregressive parameter is positive then
the collection of parameters that are closer to each other are more strongly cor-
related. Hence, the autoregressive parameter governs the degree of prior cor-
relation between neighbouring time periods. The auto-covariance at lag j for
j = 1, . . . , J is given by ρj(η∗).
Hence, a covariance matrix of the log-hazards as shown below will be given
with covariate profiles nested within the time intervals.

(η∗) =


V0 V1 V2 V3 · · · VJ−1
V1 V0 V1 V2 · · · VJ−2
V2 V1 V0 V1 · · · VJ−3
V3 V2 V1 V0 · · · VJ−1
... ... ... ... ... ...

VJ−1 VJ−2 VJ−3 VJ−4 · · · V0


where V0 is (η∗)+(γ) and (γ) is a J×J diagonal matrix which is the covariance
matrix of the interactions effects of the covariate profiles and Vk is ρk(η∗) for
k > 0.
Consequently, (η∗) is rearranged to have a covariance matrix for the vector of η
in which the time intervals are nested within the covariate profiles. Hence, the
re-ordered matrix as shown in (14).

(η∗) = H(η∗)HT (14)

Again, H is a permutation matrix, which means the means of the parameters are
now made not to depend on the time interval so that they are the same at every
time interval and then the prior is stationary. Again, the means of the parameters
can be rearranged so that the time intervals are within the covariate profiles.
Therefore µ is got from µ∗. The joint prior distribution of the parameters of the
model now has a prior mean of µ and covariance matrix (η).

2.4 Sampling of the logarithm of the hazards
The Bayesian approach to inference will be used for sampling the logarithm
of the hazards ( log-hazards). Bayesian inference requires the combination of
prior experience (which is in the form of prior probability) and the observed data
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(which is in the form of a likelihood). Therefore, the posterior distribution com-
bines the likelihood and the prior which captures all that is known about the pa-
rameters. The Bayesian inference often involves calculations which are analyti-
cally intractable. In this context, the Markov Chain Monte Carlo (MCMC) algo-
rithm (Ibrahim and Sinha, 2001), which involves sampling the log-hazards one
at a time is applied. The MCMC algorithms include Metropolis and Metropolis
Hasting algorithm, Gibbs Sampler and Metropolis within Gibbs algorithm. The
Metropolis within Gibbs sampler is used.
This method goes through each unknown and samples directly from the corre-
sponding full conditional distribution where sampling is done from a suitable
proposal distribution and either accept or reject the proposal value according to
a Metropolis Hasting acceptance rule. To this end, the conditional prior distribu-
tion of each log-hazard will be used given the others using the basic properties
of the normal distribution (Rue and Held, 2005).
The conditional prior density for the pth log-hazard representing a covariate
profile at a time interval, ηp is then given by

π(ηp) ∝ exp

{
−1

2

(ηp − µp|p′)
2

Vp|p′

}
where µp|p′ and Vp|p′ are the conditional mean and variance of the log-hazard.
The full conditional distribution of the pth log-hazard ηp is

π(ηp|D)∝ prior × likelihood
= (constant)π(ηp)Lj,p

where D is the data.
A new value of ηp, η∗p is proposed from a normal distribution and the pro-
posal density of η∗p given ηp, q(η∗p|ηp) and the proposal density of ηp given η∗p,
q(ηp|η∗p). From the Metropolis-Hastings algorithm, the proposed log-hazard η∗p
is accepted with probability

A = min
{
1,

π(η∗p|D)

π(ηp|D)

q(ηp|η∗p)
q(η∗p|ηp)

}
.

The choice of a suitable prior distribution will be based on a parametric model.
This will allow a compromise, which relaxes the form of dependence of the
hazard function while imposing enough structure to exploit the information in
the finite data sets by specifying correlations in the prior distribution between
log-hazards for neighbouring covariate profiles. The choice of prior distribution
can therefore be important for obtaining useful posterior inferences.

3. Application

The generalised piecewise constant hazard model will be applied to a data set of
300 breast cancer patients with 5 completely observed covariates which include
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age, gender, mode of diagnosis and location of breast cancer from the University
of Ilorin teaching hospital, Ilorin, Nigeria for a period of five years (Oguntunde
and Okagbue, 2017). This database holds records of the length of stay and the
status (dead or alive) after treatment from year 2011 to 2016.

3.1 An overview of explanatory variables of the Breast cancer data
The data set includes five covariates which are the age, sex, mode (mode of di-
agnosis), location (location of breast cancer) and time. The data consist of 97
patients who died and 203 patients who were censored. The data set includes
time in days of length of stay (LOS) of the patients after treatment, which were
right censored. The censoring indicator was “1” for death and “0” for censoring.
The explanatory variables used in this breast data set are discussed as follows:
Age: This is the age (in years) of the patient.
Sex: This is the sex of the patient. Female was indicated as “1” while male as
“2”. There were 25 males and 275 females in the data.
Mode of diagnosis (mode): This is the mode of diagnosis of the cancer. Cyto-
logical was indicated as “1” while histological was indicated as “2”.
Location of breast cancer (location): This indicates the location of the breast
cancer on the survivability of the breast cancer patients. Left breast was indi-
cated as “1”, right breast was indicated as “2” and both breast was indicated as
“3”.
Time: This is the time in days of length of stay of the patients after treatment.

3.2 Application to dataset using priors based on parametric model
The generalised piecewise constant hazard model is now applied to the breast
cancer data set. The time variable is measured in units of days. The ordering of
the covariates is given in Table 1.

Table 1: Ordering of covariates for the breast cancer data set for GPCH model
Covariates Notation
Age x1
Sex x2
mode x3
location x4
Time variable x5

The covariate Age was categorised into four groups (with cut points being the
lower quartile, median and upper quartile of the covariates), Sex and mode are
binary variables, location has three groups and the time variable will be divided
into ten groups. The number of covariate profiles will be 4× 2× 2× 3 = 48.
The linear predictor for the pth covariate profile in the jth time interval is defined
as

ηp,j = β0,j + βa′,j, xp,1 + βs′,j, xp,2 + βm′,j, xp,3 + βl′,j, xp,4 + γxp,1,xp,2,xp,3xp,4,j

http://www.bjs-uniben.org/



On the Generalised Piecewise Constant Hazard Model... 84
where βa′,j , βs′,j , βm′,j and βl′,j depend on the categorical value of “age”, “sex”,
“mode” and “location” respectively. Thus, the vector of covariate coefficients
of the parametric model is = (β0, βa′, βs′, βm′, βl′)

T .
There will be 8 parameters in the linear model, including an intercept. In the
construction of the prior of the covariate effects, we avoid over parameterisation
since all covariates are categorical. For instance, we have that δa′,1 , δa′,2 and δa′,3
for the coefficient of age. Following Farrow (2011), the prior distribution of the
parameters is constructed as given in Table 2.

Table 2: The prior means and variances for the parameters of the Breast cancer
data set

Parameter prior mean prior variances
β0 (baseline parameter) -6 0.12
δa′,1 0.000 0.02
δa′,2 0.000 0.06
δa′,3 0.000 0.003
δs′ 0.000 0.0625
δm′ 0.000 0.06
δl′,1 0.000 0.02
δ1′,2 0.000 0.001

Accordingly, the prior vector of prior means µ∗ and covariance matrix (η∗) of
the log hazards are equally constructed. The contribution of the right censored
observation to the likelihood is usually the survival function. In the case of the
generalised piecewise constant hazard model, the assumption is that associated
with every patient is a time which could either be a death or censoring time.
Every interval is associated with three different groups of patients; patients who
died during the interval, patients who were censored during the interval and
patients who survived during the interval. The contribution of the likelihood
from the patients in every interval will depend on the three different groups of
patients. Recall that the likelihood contribution in the jth time interval for the
kth individual with profile p is written as Lj,p,k. Hence, the overall likelihood is
as given in (10).

4. Results and discussions

The Metropolis within Gibbs algorithm can be applied here. The R functions
(R Development Core Team, 2008) was used for the computation. Following a
burn-in of 50000 iterations, 100000 iterations were taken. The posterior means
and variances of some of the log-hazards are given in Table 3. The posterior
means and variances of some of the log - hazards for the parameters of the
breast cancer data set.
In the generalised piecewise constant hazard model, the choice of prior allowed
a compromise that relaxed the form of dependence of the hazard function on
the covariates while imposing enough structure to exploit the information in the
data set by specifying correlations in the prior distribution between log-hazards
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Table 3: The posterior means and variances of some of the log - hazards for the
parameters of the breast cancer data set

Parameters Posterior mean Posterior variance
η1 −2.173 0.00019
η2 −2.097 0.00056
η3 −2.023 0.00045
η4 −2.013 0.00038
η5 −2.027 0.00018
η6 −2.082 0.00025
η7 −1.950 0.00019
η8 −1.967 0.0007
η9 −1.930 0.0019
η10 −2.008 0.0005

for neighbouring covariate profiles.
It is important to discuss the strength and weakness of the GPCH model com-
pared to other models like the usual proportional hazard model. One major ad-
vantage of the GPCH model over most methods used in Bayesian inference
is the possibility of forming and combining the marginal variances of the co-
variate profiles to reflect a reasonable assessment of our prior uncertainties. In
the GPCH model, the corresponding hazard is constant within cells. The model
has the flexibility of deciding on the choice of the number of cut points and
hence, avoid having too many parameters in the model. Another advantage of
the GPCH model is the flexibility to exploit the Markov property within cells
by using the Gibbs sampling where a particular log-hazard corresponding to a
cell can simply be sampled by conditioning on the neighbours.
One weakness of the GPCH model is the problem of the choice of the number
of categories of the ordinal covariates. However, in this work each continuous
covariate have been partitioned into four groups and the lower quartile, median
and upper quartile were used as the cut points of the covariates. The range of
the observations of the covariate of interest could as well be partitioned into
four intervals of equal width and then use these groups as the categories of
the ordinal covariates. Another weakness of the GPCH model is that it can be
illustrated using only a data set with smaller number of covariates.
In order to determine the performance of the GPCH model, the GPCH model is
compared with the proportional hazard model (PHM) based on Akaike informa-
tion Criterion (AIC) value using R statistical software. The Akaike information
Criterion (AIC) is a measure that is used to select a model from a set of models.
The AIC is given as

AIC = −2× loglikelihood + 2× k (15)

where k is the number of parameters in the model. Smaller AIC value indicates
a better model fit.
The Akaike Information Criterion was calculated for both the GPCH and pro-
portional hazard model and the values were given as 931.8117 and 974.4885
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respectively. The GPCH has a smaller value in AIC while the PHM has big-
ger value. This proves that the GPCH model is a better fit for the breast cancer
patient’s data.

5. Conclusion

This research has discussed a way of relaxing the specification of the form of
dependence of the hazard on the covariates in survival analysis. A Bayesian
approach to the generalised piecewise constant hazard (GPCH) model using
suitable priors and MCMC simulation is presented. In the generalised piecewise
constant hazard model, the covariates were made ordinal and a finite number of
possible covariate profiles were developed. A “cell” will be produced when the
covariate profile and the time interval are combined. Then a prior distribution
for the log-hazards of the covariate profiles which was based on the parametric
model and allowed for main and interaction effects were used.
In the generalised piecewise constant hazard model, the number of covariate
profiles will depend on the number of covariates and categories. In general, if
there are many covariates with many categories, the number of covariate pro-
files will be huge and hence, involves fitting a model with so many parameters.
There will be fewer individuals in the data set with more number of distinct co-
variate profiles among observed individuals. Some of the cells might not have
individuals in the neighbouring cells because the cells might have no data. The
GPCH model is very practicable in the case of the breast cancer data where
there were only four covariates, 48 covariate profiles and 10 time periods and
hence, a total of 480 cells in the range of 300 patients. The log-hazard for a cell
in the multidimensional array depends on those in the neighbouring cells and
hence the Markov property was be used.
The Bayesian approach to modelling accounts for right – censored survival data
and the covariate effects also show posterior consistency. This approach to mod-
elling is an important measure not only to clinicians (in determining prognosis
and treatment) but also for patients and their families for decision making. The
Bayesian approach will also help in the understanding of quantities that will
help inform researchers render treatment to patients and assess the patient’s
survival.
The approach of modelling used in this research has the possibility of forming
and combining the marginal variances of the covariate profiles which reflect a
reasonable assessment of the prior uncertainties. In the GPCH model, we have
categorised the covariates and the covariate profiles are combined with the time
interval to form cells within which the corresponding hazard is constant. In
this research, we have also considered the dependence between parameters in
the different time intervals by supposing a first order autoregressive model and
choosing an autoregressive parameter which gives the strength of relationships
to the log-hazards and hence, exploiting the Markov property.
The GPCH model is particularly useful in the context in which the baseline haz-
ard is of primary interest. The study demonstrated that the generalised piecewise
hazard model offered the flexibility of the modelling of the covariate effects
with ease. The model relaxed the relationship among the covariates by remov-
ing the usual assumption of proportionality. The GPCH model generalised the
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piecewise constant hazard model by dividing the patients into covariate pro-
files with which the hazard was constant. This study also demonstrated how
the choice of prior allowed for a compromise which relaxed the form of depen-
dence of the hazard function on the covariates while it imposed enough structure
to exploit the information in the data set by specifying correlations in the prior
distribution between log-hazards for neighbouring covariate profiles.
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