Assessing the Forecast Performance of ARTFIMA-FIAPARCH Hybrid Model
Main Article Content
Abstract
Downloads
Article Details
Issue
Section

This work is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License.
How to Cite
References
Almeida, R., Dias, C., Silva, M. E. and Rocha, A.P. (2017). ARFIMA-GARCH Modeling of HRV: Clinical Application in Acute Brain Injury. Complexity and nonlinearity in cardio-vascular Signal-Springer. DOI: 10.1007/978-3-319-58709-717.
Ambach, D., and Ambach, O. (2018). Forcasting the Oil Price with a Periodic Regression ARFIMA- GARCH Process. IEEE Second International Conference on data stream minning and Processing LVIV,Ukraine.
Baillie, R.T., Bollesleve, T., and Mikkelsen, H.O. (1996a). Fractionally Integrated Generalized Autoregressive Conditional Heteroscedasticity. Journal of Econometrics, 74, 3-30.
Baillie, R.T, Chung, C.F, and Tieslau, M.A.(1996b). Analysing Inflation by the Fractionally IntegratedARFIMA-GARCHModel. Journal of Applied Econometrics, 11, 23-40.
Beran, J. (1999). SEMIFAR Models a Semiparametric Fractional Framework for Modelling Trends, Long-range Dependence and Nonstationarity. Preprint, University of Konstanz.
Bollerslev, T., and Mikkelsen, H. O. (1996). Modeling and Pricing Long Memory in Stock Market Volatility. Journal of econometrics, 73(1), 151-184.
Ding, Z., Granger, C.W. J., and Engle, R.F. (1993). A Long Memory Property of Stock Market Returns and a New Model. Journal of empirical finance, 1, 83-106.
Duppati, G., Kumar, A. S., Scrimgeour, F., and Li, L. (2017). Long Memory Volatility in Asian Stock Market. Pacific Accounting review, 29(3), 423-442.
Engle, R. F. (1982). Autoregressive Conditional Heteroscedasticity with Estimates of Variance of UK Inflation. Econometrica, 50, 987-1008.
Granger, C.W.J., and Joyeux R., (1980). An Introduction to Long Memory Time Series Models and Fractional Dierencing. Journal of Time Series Analysis, 1(1), 15-29.
Hosking J.R.M. (1981). Fractional Dierencing. Biometrika, 68(1), 165-176.
Ishida, I., and Watanabe, T. (2009). Modeling and Forecasting the Volatility of the Nikkei 225: Realized Volatility using ARFIMA-GARCH. Research unit for statistical and empirical Analysis for social sciences (HI-Sat) discussion paper series 032.
Jibrin, S. A., Ibrahim H.I., and Munkaila D. (2022). ANovel Hybrid ARFURIMAAPARCH Model for Modeling Interminable Long Memory and Asymmetric Effect in Time Series. Dutse Journal of Pure and Applied Sciences (DUJOPAS), 8(2a), 2635- 3490.
Kabala, J., (2020). ARTFIMA Processes and their Applications to Solar Flare Data. Creative components. 595.
Korkmaz, T., Cevik, E.I., and Ozatac, N. (2009). Studying Long Memory in ISE using ARFIMA-FIGARCHModel and Structural Break Test. International Research Journal of Finance and Economics, 26, 186-191.
Leite, A., Rocha, A., and Silva, M. (2009). Long Memory and Volatility in HRV: An ARFFIMA-GARCH Approach. Computers in Cardiolgy, IEES, 165-168.
Meerschaert, M.M., Sabzikar ,F., Panikumar, M.S., and Zeleke, A., (2014). Tempered Fractional Time Series Model for Turbulence in Geophysical Flows. Journal of Statistical Mechanics: Theory and Experiment
Nelson, D. B., (1991). Conditional Heteroskedasticity in Asset Returns: A New Approach. Econometrica, 59(2), 347-370.
Pumi, G., Valk, M., Bisognin, C., Bayer, F. M., and Prass, T. S. (2019). Beta Autoregressive Fractionally Integrated Moving Average Models. Journal of Statistical Planning and Inference, 200, 196-212.
Rahman R.A., and Jibrin S.A. (2018). A Modified Long Memory Model for Modeling Interminable Long memory Process. International conference on computing, mathematics and Statistics.
Safadi, T., and Pereira, I., (2010). Bayesian Analysis of FIAPARCH: An Application to Sao Paulo Stock Market, Autumn, 5(10).
Sivakumar, P. B., and Mohandas, V. P. (2009). Modeling and Predicting Stock Returns Using ARFIMA-FIGARCH: A Case Study on Indian Stock Data. Conference paper: World Congress On Nature and Biologically inspired Computing, Coimbatore, India.
Tse, Y.K. (1998). The Conditional Heteroscedasticity of the Yen- Dollar Exchange Rate. The Journal of Applied Econometrics, 13(1), 49-55.
Umar, A. G., Dikko, H. G., Garba, J., and Tasiu, M. (2023). A Study of Nigeria Monthly Stock Price Index Using ARTFIMA-FIGARCH Hybrid Model. UMYU Scientifica, 2(4), 114-121.
Zhou, J., and He, C., (2009). Modeling S & P 500 STOCK INDEX using ARMAASYMMETRIC POWER ARCH models. Unpublished Master thesis.